985 resultados para Wheat blast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To characterize aphid mitochondrial genome (mitogenome) features, we sequenced the complete mitogenome of the Russian wheat aphid, Diuraphis noxia. The 15,784-bp mitogenome with a high A + T content (84.76%) and strong C skew (− 0.26) was arranged in the same gene order as that of the ancestral insect. Unlike typical insect mitogenomes, D. noxia possessed a large tandem repeat region (644 bp) located between trnE and trnF. Sequencing partial mitogenome of the cotton aphid (Aphis gossypii) further confirmed the presence of the large repeat region in aphids, but with different repeat length and copy number. Another motif (58 bp) tandemly repeated 2.3 times in the control region of D. noxia. All repeat units in D. noxia could be folded into stem-loop secondary structures, which could further promote an increase in copy numbers. Characterization of the D. noxia mitogenome revealed distinct mitogenome architectures, thus advancing our understanding of insect mitogenomic diversities and evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the blast response, damage mechanism and evaluation of residual load capacity of a concrete–steel composite (CSC) column using dynamic computer simulation techniques. This study is an integral part of a comprehensive research program which investigated the vulnerability of structural framing systems to catastrophic and progressive collapse under blast loading and is intended to provide design information on blast mitigation and safety evaluation of load bearing vulnerable columns that are key elements in a building. The performance of the CSC column is compared with that of a reinforced concrete (RC) column with the same dimensions and steel ratio. Results demonstrate the superior performance of the CSC column, compared to the RC column in terms of residual load carrying capacity, and its potential for use as a key element in structural systems. The procedure and results presented herein can be used in the design and safety evaluation of key elements of multi-storey buildings for mitigating the impact of blast loads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blast mats that can be retrofitted to the floor of military vehicles are considered to reduce the risk of injury from under‐vehicle explosions. Anthropometric test devices (ATDs) are validated for use only in the seated position. The aim of this study was to use a traumatic injury simulator fitted with 3 different blast mats in order to assess the ability of 2 ATD designs to evaluate the protective capacity of the mats in 2 occupant postures under 2 severities. Tests were performed for each combination of mat design, ATD, severity and posture using an antivehicle under‐belly injury simulator. The differences between mitigation systems were larger under the H‐III compared to the MiL‐Lx. There was little difference in how the 2 ATDs and how posture ranked the mitigation systems. Results from this study suggest that conclusions obtained by testing in the seated position can be extrapolated to the standing. However, the different percentage reductions observed in the 2 ATDs suggests different levels of protection. It is therefore unclear which ATD should be used to assess such mitigation systems. A correlation between cadavers and ATDs on the protection offered by blast mats is required in order to elucidate this issue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since World War I, explosions have accounted for over 70% of all injuries in conflict. With the development of improved personnel protection of the torso, improved medical care and faster aeromedical evacuation, casualties are surviving with more severe injuries to the extremities. Understanding the processes involved in the transfer of blast-induced shock waves through biological tissues is essential for supporting efforts aimed at mitigating and treating blast injury. Given the inherent heterogeneities in the human body, we argue that studying these processes demands a highly integrated approach requiring expertise in shock physics, biomechanics and fundamental biological processes. This multidisciplinary systems approach enables one to develop the experimental framework for investigating the material properties of human tissues that are subjected to high compression waves in blast conditions and the fundamental cellular processes altered by this type of stimuli. Ultimately, we hope to use the information gained from these studies in translational research aimed at developing improved protection for those at risk and improved clinical outcomes for those who have been injured from a blast wave.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the population genetics, demographic history and pathway of invasion of the Russian wheat aphid (RWA) from its native range in Central Asia, the Middle East and Europe to South Africa and the Americas. We screened microsatellite markers, mitochondrial DNA and endosymbiont genes in 504 RWA clones from nineteen populations worldwide. Following pathway analyses of microsatellite and endosymbiont data, we postulate that Turkey and Syria were the most likely sources of invasion to Kenya and South Africa, respectively. Furthermore, we found that one clone transferred between South Africa and the Americas was most likely responsible for the New World invasion. Finally, endosymbiont DNA was found to be a high resolution population genetic marker, extremely useful for studies of invasion over a relatively short evolutionary history time frame. This study has provided valuable insights into the factors that may have facilitated the recent global invasion by this damaging pest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research treated the response of pile foundations to blast loads. The influence of important parameters was investigated. The research techniques and the results will enable safer design of pile foundations that are vulnerable to blast loads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of appropriate nursery environments will maximize gain from selection for yield of wheat (Triticum aestivum L.) in the target population of environments of a breeding program. The objective of this study was to investigate how well-irrigated (low-stress) nursery environments predict yield of lines in target environments that varied in degree of water limitation. Fifteen lines were sampled from the preliminary yield evaluation stage of the Queensland wheat breeding program and tested in 26 trials under on-farm conditions (Target Environments) across nine years (1985 to 1993) and also in 27 trials conducted at three research stations (Nursery Environments) in three years (1987 to 1989). The nursery environments were structured to impose different levels of water and nitrogen (N) limitation, whereas the target environments represented a random sample of on-farm conditions from the target population of environments. Indirect selection and pattern analysis methods were used to investigate selection for yield in the nursery environments and gain from selection in the target environments. Yield under low-stress nursery conditions was an effective predictor of yield under similar low-stress target environments (r = 0.89, P < 0.01). However, the value of the low-stress nursery as a predictor of yield in the water-limited target environments decreased with increasing water stress (moderate stress r = 0.53, P < 0.05, to r = 0.38, P > 0.05; severe stress r = -0.08, P > 0.05). Yield in the stress nurseries was a poor predictor of yield in the target environments. Until there is a clear understanding of the physiological-genetic basis of variation for adaptation of wheat to the water-limited environments in Queensland, yield improvement can best be achieved by selection for a combination of yield potential in an irrigated low-stress nursery and yield in on-farm trials that sample the range of water-limited environments of the target population of environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a comprehensive numerical procedure to treat the blast response of laminated glass (LG) panels and studies the influence of important material parameters. Post-crack behaviour of the LG panel and the contribution of the interlayer towards blast resistance are treated. Modelling techniques are validated by comparing with existing experimental results. Findings indicate that the tensile strength of glass considerably influences the blast response of LG panels while the interlayer material properties have a major impact on the response under higher blast loads. Initially, glass panes absorb most of the blast energy, but after the glass breaks, interlayer deforms further and absorbs most of the blast energy. LG panels should be designed to fail by tearing of the interlayer rather than failure at the supports to achieve a desired level of protection. From this aspect, material properties of glass, interlayer and sealant joints play important roles, but unfortunately they are not accounted for in the current design standards. The new information generated in this paper will enhance the capabilities of engineers to better design LG panels under blast loads and use better materials to improve the blast response of LG panels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficiency of the nitrogen (N) application rates 0, 120, 180 and 240 kg N ha−1 in combination with low or medium water levels in the cultivation of winter wheat (Triticum aestivum L.) cv. Kupava was studied for the 2005–2006 and 2006–2007 growing seasons in the Khorezm region of Uzbekistan. The results show an impact of the initial soil Nmin (NO3-N + NH4-N) levels measured at wheat seeding on the N fertilizer rates applied. When the Nmin content in the 0–50 cm soil layer was lower than 10 mg kg−1 during wheat seeding in 2005, the N rate of 180 kg ha−1 was found to be the most effective for achieving high grain yields of high quality. With a higher Nmin content of about 30 mg kg−1 as was the case in the 2006 season, 120 kg N ha−1 was determined as being the technical and economical optimum. The temporal course of N2O emissions of winter wheat cultivation for the two water-level studies shows that emissions were strongly influenced by irrigation and N-fertilization. Extremely high emissions were measured immediately after fertilizer application events that were combined with irrigation events. Given the high impact of N-fertilizer and irrigation-water management on N2O emissions, it can be concluded that present N-management practices should be modified to mitigate emissions of N2O and to achieve higher fertilizer use efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Realistic virtual models of leaf surfaces are important for a number of applications in the plant sciences, such as modelling agrichemical spray droplet movement and spreading on the surface. In this context, the virtual surfaces are required to be sufficiently smooth to facilitate the use of the mathematical equations that govern the motion of the droplet. While an effective approach is to apply discrete smoothing D2-spline algorithms to reconstruct the leaf surfaces from three-dimensional scanned data, difficulties arise when dealing with wheat leaves that tend to twist and bend. To overcome this topological difficulty, we develop a parameterisation technique that rotates and translates the original data, allowing the surface to be fitted using the discrete smoothing D2-spline methods in the new parameter space. Our algorithm uses finite element methods to represent the surface as a linear combination of compactly supported shape functions. Numerical results confirm that the parameterisation, along with the use of discrete smoothing D2-spline techniques, produces realistic virtual representations of wheat leaves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research treated the response of underground transportation tunnels to surface blast loads using advanced computer simulation techniques. The influences of important parameters, such as tunnel material, geometrical configuration of segments and surrounding soil were investigated. The findings of this research offer significant new information on the blast performance of underground tunnels and will contribute towards future civil engineering applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing threat of terrorism highlights the importance of enhancing the resilience of underground tunnels to all hazards. This paper develops, applies and compares the Arbitrary Lagrangian Eulerian (ALE) and Smooth Particle Hydrodynamics (SPH) techniques to treat the response of buried tunnels to surface explosions. The results and outcomes of the two techniques were compared, along with results from existing test data. The comparison shows that the ALE technique is a better method for describing the tunnel response for above ground explosion with regards to modeling accuracy and computational efficiency. The ALE technique was then applied to treat the blast response of different types of segmented bored tunnels buried in dry sand. Results indicate that the most used modern ring type segmented tunnels were more flexible for in-plane response, however, they suffered permanent drifts between the rings. Hexagonal segmented tunnels responded with negligible drifts in the longitudinal direction, but the magnitudes of in-plane drifts were large and hence hazardous for the tunnel. Interlocking segmented tunnels suffered from permanent drifts in both the longitudinal and transverse directions. Multi-surface radial joints in both the hexagonal and interlocking segments affected the flexibility of the tunnel in the transverse direction. The findings offer significant new information in the behavior of segmented bored tunnels to guide their future implementation in civil engineering applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Underground transport tunnels are vulnerable to blast events. This paper develops and applies a fully coupled technique involving the Smooth Particle Hydrodynamics and Finite Element techniques to investigate the blast response of segmented bored tunnels. Findings indicate that several bolts failed in the longitudinal direction due to redistribution of blast loading to adjacent tunnel rings. The tunnel segments respond as arch mechanisms in the transverse direction and suffered damage mainly due to high bending stresses. The novel information from the present study will enable safer designs of buried tunnels and provide a benchmark reference for future developments in this area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis develops and applies an analytical method to treat the blast response of glass façades and studies the influence of controlling parameters such as all component materials and geometric properties, support conditions and energy absorption, and hence establishes a framework for their design for a credible blast event.