853 resultados para Wetland ecosystems
Resumo:
The car has arguably had more influence on our lifestyle and urban environment than any other consumer product; allowing unprecedented freedom for living, working and recreation where and when we choose. However, problems of pollution, congestion, road trauma, inefficient land use and social inequality are associated with car use. Despite 100 years of design and technology refinements, the aforementioned problems are significant and persistent: many argue that resolving these problems requires a fundamental redesign of the car. Redesigned vehicles have been proposed such as the MIT CityCar and others such as the Renault Twizy, commercialized. None however have successfully brought about significant change and the study of disruptive innovation offers an explanation for this. Disruptive innovation, by definition, disrupts a market. It also disrupts the product ecosystem. The existing product ecosystem has co-evolved to support the conventional car and is not optimized for the new design: which will require a redesigned ecosystem to support it. A literature review identifies a lack of methodology for identifying the components of product ecosystems and the changes required for disruptive innovation implementation. This paper proposes such a methodology based on Design Thinking, Actor Network Theory, Disruptive Innovation and the CityCar scenarios.
Resumo:
We identify the 10 major terrestrial and marine ecosystems in Australia most vulnerable to tipping points, in which modest environmental changes can cause disproportionately large changes in ecosystem properties. To accomplish this we independently surveyed the coauthors of this paper to produce a list of candidate ecosystems, and then refined this list during a 2-day workshop. The list includes (1) elevationally restricted mountain ecosystems, (2) tropical savannas, (3) coastal floodplains and wetlands, (4) coral reefs, (5) drier rainforests, (6) wetlands and floodplains in the Murray-Darling Basin, (7) the Mediterranean ecosystems of southwestern Australia, (8) offshore islands, (9) temperate eucalypt forests, and (10) salt marshes and mangroves. Some of these ecosystems are vulnerable to widespread phase-changes that could fundamentally alter ecosystem properties such as habitat structure, species composition, fire regimes, or carbon storage. Others appear susceptible to major changes across only part of their geographic range, whereas yet others are susceptible to a large-scale decline of key biotic components, such as small mammals or stream-dwelling amphibians. For each ecosystem we consider the intrinsic features and external drivers that render it susceptible to tipping points, and identify subtypes of the ecosystem that we deem to be especially vulnerable. © 2011 Elsevier Ltd.
Resumo:
Service-oriented architectures and Web services mature and have become more widely accepted and used by industry. This growing adoption increased the demands for new ways of using Web service technology. Users start re-combining and mediating other providers’ services in ways that have not been anticipated by their original provider. Within organisations and cross-organisational communities, discoverable services are organised in repositories providing convenient access to adaptable end-to-end business processes. This idea is captured in the term Service Ecosystem. This paper addresses the question of how quality management can be performed in such service ecosystems. Service quality management is a key challenge when services are composed of a dynamic set of heterogeneous sub-services from different service providers. This paper contributes to this important area by developing a reference model of quality management in service ecosystems. We illustrate the application of the reference model in an exploratory case study. With this case study, we show how the reference model helps to derive requirements for the implementation and support of quality management in an exemplary service ecosystem in public administration.
Resumo:
Service Science, Management, and Engineering (SSME) is a research area with significant relevance to research and practice. Networked systems of web services are a field of service science that enjoys growing interest from researchers. The complex and dynamic environment of these service ecosystems poses new requirements on quality management that are insufficiently addressed by current approaches that focus mainly on the technical aspects of quality. This focus is a severe limitation for the development of service networks because it neglects perceived service quality from the viewpoint of service consumers. In this paper we propose a reference model for quality management in service ecosystems. This reference model is linked in particular to innovation and new service development. Towards the end we propose premises for the implementation and outline a future research agenda.
Resumo:
This study explored early career academics' experiences in using information to learn while building their networks for professional development. A 'knowledge ecosystem' model was developed consisting of informal learning interactions such as relating to information to create knowledge and engaging in mutually supportive relationships. Findings from this study present an alternative interpretation of information use for learning that is focused on processes manifesting as human interactions with informing entities revolving around the contexts of reciprocal human relationships.
Resumo:
1.Marine ecosystems provide critically important goods and services to society, and hence their accelerated degradation underpins an urgent need to take rapid, ambitious and informed decisions regarding their conservation and management. 2.The capacity, however, to generate the detailed field data required to inform conservation planning at appropriate scales is limited by time and resource consuming methods for collecting and analysing field data at the large scales required. 3.The ‘Catlin Seaview Survey’, described here, introduces a novel framework for large-scale monitoring of coral reefs using high-definition underwater imagery collected using customized underwater vehicles in combination with computer vision and machine learning. This enables quantitative and geo-referenced outputs of coral reef features such as habitat types, benthic composition, and structural complexity (rugosity) to be generated across multiple kilometre-scale transects with a spatial resolution ranging from 2 to 6 m2. 4.The novel application of technology described here has enormous potential to contribute to our understanding of coral reefs and associated impacts by underpinning management decisions with kilometre-scale measurements of reef health. 5.Imagery datasets from an initial survey of 500 km of seascape are freely available through an online tool called the Catlin Global Reef Record. Outputs from the image analysis using the technologies described here will be updated on the online repository as work progresses on each dataset. 6.Case studies illustrate the utility of outputs as well as their potential to link to information from remote sensing. The potential implications of the innovative technologies on marine resource management and conservation are also discussed, along with the accuracy and efficiency of the methodologies deployed.
Resumo:
Non-use values (i.e. economic values assigned by individuals to ecosystem goods and services unrelated to current or future uses) provide one of the most compelling incentives for the preservation of ecosystems and biodiversity. Assessing the non-use values of non-users is relatively straightforward using stated preference methods, but the standard approaches for estimating non-use values of users (stated decomposition) have substantial shortcomings which undermine the robustness of their results. In this paper, we propose a pragmatic interpretation of non-use values to derive estimates that capture their main dimensions, based on the identification of a willingness to pay for ecosystem protection beyond one's expected life. We empirically test our approach using a choice experiment conducted on coral reef ecosystem protection in two coastal areas in New Caledonia with different institutional, cultural, environmental and socio-economic contexts. We compute individual willingness to pay estimates, and derive individual non-use value estimates using our interpretation. We find that, a minima, estimates of non-use values may comprise between 25 and 40% of the mean willingness to pay for ecosystem preservation, less than has been found in most studies.
Resumo:
Constructed wetlands are among the most common Water Sensitive Urban Design (WSUD) measures for stormwater treatment. These systems have been extensively studied to understand their performance and influential treatment processes. Unfortunately, most past studies have been undertaken considering a wetland system as a lumped system with a primary focus on the reduction of the event mean concentration (EMC) values of specific pollutant species or total pollutant load removal. This research study adopted an innovative approach by partitioning the inflow runoff hydrograph and then investigating treatment performance in each partition and their relationships with a range of hydraulic factors. The study outcomes confirmed that influenced by rainfall characteristics, the constructed wetland displays different treatment characteristics for the initial and later sectors of the runoff hydrograph. The treatment of small rainfall events (<15 mm) is comparatively better at the beginning of runoff events while the trends in pollutant load reductions for large rainfall events (>15 mm) are generally lower at the beginning and gradually increase towards the end of rainfall events. This highlights the importance of ensuring that the inflow into a constructed wetland has low turbulence in order to achieve consistent treatment performance for both, small and large rainfall events.
Resumo:
There is a growing need for measures assessing technological changes in systemic contexts as business ecosystems replace standalone products. In these ecosystem contexts, organizations are required to manage their innovation processes in increasingly networked and complex environments. In this paper, we introduce the technology and ecosystem clockspeed measures that can be used to assess the temporal nature of technological changes in a business ecosystem. We analyze systemic changes in the personal computer (PC) ecosystem, explicitly focusing on subindustries central to the delivery of PC gaming value to the end user. Our results show that the time-based intensity of technological competition in intertwined subindustries of a business ecosystem may follow various trajectories during the evolution of the ecosystem. Hence, the technology and ecosystem clockspeed measures are able to pinpoint alternating dynamics in technological changes among the subindustries in the business ecosystem. We subsequently discuss organizational considerations and theoretical implications of the proposed measures.
Resumo:
If the land sector is to make significant contributions to mitigating anthropogenic greenhouse gas (GHG) emissions in coming decades, it must do so while concurrently expanding production of food and fiber. In our view, mathematical modeling will be required to provide scientific guidance to meet this challenge. In order to be useful in GHG mitigation policy measures, models must simultaneously meet scientific, software engineering, and human capacity requirements. They can be used to understand GHG fluxes, to evaluate proposed GHG mitigation actions, and to predict and monitor the effects of specific actions; the latter applications require a change in mindset that has parallels with the shift from research modeling to decision support. We compare and contrast 6 agro-ecosystem models (FullCAM, DayCent, DNDC, APSIM, WNMM, and AgMod), chosen because they are used in Australian agriculture and forestry. Underlying structural similarities in the representations of carbon flows though plants and soils in these models are complemented by a diverse range of emphases and approaches to the subprocesses within the agro-ecosystem. None of these agro-ecosystem models handles all land sector GHG fluxes, and considerable model-based uncertainty exists for soil C fluxes and enteric methane emissions. The models also show diverse approaches to the initialisation of model simulations, software implementation, distribution, licensing, and software quality assurance; each of these will differentially affect their usefulness for policy-driven GHG mitigation prediction and monitoring. Specific requirements imposed on the use of models by Australian mitigation policy settings are discussed, and areas for further scientific development of agro-ecosystem models for use in GHG mitigation policy are proposed.
Resumo:
Despite the growing attention innovation ecosystems have received from scholars and practitioners, rather little is known about the crucial birth and expansion phases that these ecosystems experience. Through a single case in the complex product system (CoPS) environment, this paper investigates the development of an innovation ecosystem between 1980 and 2007. The findings demonstrate that the ecosystem’s birth phase includes sub-phases, namely, invention and start-up, where the ecosystem is reconfigured to find the appropriate form and the proper actors to satisfy the first customer’s requirements. Moreover, the duration of the expansion phase is found to be remarkably long, suggesting that within the CoPS setting, expansion may also include two or more sub-phases.
Resumo:
With the introduction of the PCEHR (Personally Controlled Electronic Health Record), the Australian public is being asked to accept greater responsibility for the management of their health information. However, the implementation of the PCEHR has occasioned poor adoption rates underscored by criticism from stakeholders with concerns about transparency, accountability, privacy, confidentiality, governance, and limited capabilities. This study adopts an ethnographic lens to observe how information is created and used during the patient journey and the social factors impacting on the adoption of the PCEHR at the micro-level in order to develop a conceptual model that will encourage the sharing of patient information within the cycle of care. Objective: This study aims to firstly, establish a basic understanding of healthcare professional attitudes toward a national platform for sharing patient summary information in the form of a PCEHR. Secondly, the studies aims to map the flow of patient related information as it traverses a patient’s personal cycle of care. Thus, an ethnographic approach was used to bring a “real world” lens to information flow in a series of case studies in the Australian healthcare system to discover themes and issues that are important from the patient’s perspective. Design: Qualitative study utilising ethnographic case studies. Setting: Case studies were conducted at primary and allied healthcare professionals located in Brisbane Queensland between October 2013 and July 2014. Results: In the first dimension, it was identified that healthcare professionals’ concerns about trust and medico-legal issues related to patient control and information quality, and the lack of clinical value available with the PCEHR emerged as significant barriers to use. The second dimension of the study which attempted to map patient information flow identified information quality issues, clinical workflow inefficiencies and interoperability misconceptions resulting in duplication of effort, unnecessary manual processes, data quality and integrity issues and an over reliance on the understanding and communication skills of the patient. Conclusion: Opportunities for process efficiencies, improved data quality and increased patient safety emerge with the adoption of an appropriate information sharing platform. More importantly, large scale eHealth initiatives must be aligned with the value proposition of individual stakeholders in order to achieve widespread adoption. Leveraging an Australian national eHealth infrastructure and the PCEHR we offer a practical example of a service driven digital ecosystem suitable for co-creating value in healthcare.
Resumo:
The Three-Georges Dam holds many records in the history of engineering. While the dam has produced benefits in terms of flood control, hydropower generation and increased navigation capacity of the Yangtze River, serious questions have been raised concerning its impact on both upstream and downstream ecosystems. It has been suggested that the dam operation intensifies the extremes of wet and dry conditions in the downstream Poyang Lake, and affects adversely important local wetlands. A floodgate has been proposed to maintain the lake water level by controlling the flow between the Poyang Lake and Yangtze River. Using extensive hydrological data and generalized linear statistical models, we demonstrated that the dam operation induces major changes in the downstream river discharge near the dam, including an average "water loss". The analysis also revealed considerable effects on the Poyang Lake water level, particularly a reduced level over the dry period from late summer to autumn. However, the dam impact needs to be further assessed based on long-term monitoring of the lake ecosystem, covering a wide range of parameters related to hydrological and hydraulic characteristics of the lake, water quality, geomorphological characteristics, aquatic biota and their habitat, wetland vegetation and associated fauna.
Resumo:
The original pasture ecosystems of southern inland Queensland ranged from treeless grasslands on cracking clays through grassy woodlands of varying density on a great range of soil types to those competing at the dynamic edges of forests and scrubs. Fire, both wild and aboriginal-managed, was a major factor, along with rainfall extremes, in shaping the pastures and tree:grass balance. Seedling recruitment was driven by rainfall extremes, availability of germinable seed and growing space, with seed availability and space being linked to the timing and intensity of recent fires and rain. The impact of insects, diseases, severe wind and hailstorms on recruitment should not be underestimated. The more fertile soils had denser grass growth, greater fire frequency and thinner tree cover than infertile soils, except where trees were so dense that grass growth was almost eliminated. The pastures were dominated by perennial tussock grasses of mid-height but included a wide array of minor herbaceous species whose abundance was linked to soil type and recent seasonal conditions. Many were strongly perennial with Asteraceae, Fabaceae, Malvaceae, Cyperaceae and Goodeniaceae most common in an environment, which can experience effective rainfall at any time of year. The former grassland communities that are now productive farming lands are not easily returned to their original composition. However, conservation of remnant examples of original pasture types is very achievable provided tree density is controlled, prescribed burning and grazing are used and rigorous control of invasive, exotic species is undertaken. This should be done with a clear understanding that significant short-and medium-term fluctuations in botanical composition are normal.