838 resultados para Web-Based Interventions
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
En esta tesis se propone el uso de agentes inteligentes en entornos de aprendizaje en línea con el fin de mejorar la asistencia y motivación del estudiante a través de contenidos personalizados que tienen en cuenta el estilo de aprendizaje del estudiante y su nivel de conocimiento. Los agentes propuestos se desempeñan como asistentes personales que ayudan al estudiante a llevar a cabo las actividades de aprendizaje midiendo su progreso y motivación. El entorno de agentes se construye a través de una arquitectura multiagente llamada MASPLANG diseñada para dar soporte adaptativo (presentación y navegación adaptativa) a un sistema hipermedia educativo desarrollado en la Universitat de Girona para impartir educación virtual a través del web. Un aspecto importante de esta propuesta es la habilidad de construir un modelo de estudiante híbrido que comienza con un modelo estereotípico del estudiante basado en estilos de aprendizaje y se modifica gradualmente a medida que el estudiante interactúa con el sistema (gustos subjetivos). Dentro del contexto de esta tesis, el aprendizaje se define como el proceso interno que, bajo factores de cambio resulta en la adquisición de la representación interna de un conocimiento o de una actitud. Este proceso interno no se puede medir directamente sino a través de demostraciones observables externas que constituyen el comportamiento relacionado con el objeto de conocimiento. Finalmente, este cambio es el resultado de la experiencia o entrenamiento y tiene una durabilidad que depende de factores como la motivación y el compromiso. El MASPLANG está compuesto por dos niveles de agentes: los intermediarios llamados IA (agentes de información) que están en el nivel inferior y los de Interfaz llamados PDA (agentes asistentes) que están en el nivel superior. Los agentes asistentes atienden a los estudiantes cuando trabajan con el material didáctico de un curso o una lección de aprendizaje. Esta asistencia consiste en la recolección y análisis de las acciones de los estudiantes para ofrecer contenidos personalizados y en la motivación del estudiante durante el aprendizaje mediante el ofrecimiento de contenidos de retroalimentación, ejercicios adaptados al nivel de conocimiento y mensajes, a través de interfaces de usuario animadas y atractivas. Los agentes de información se encargan del mantenimiento de los modelos pedagógico y del dominio y son los que están en completa interacción con las bases de datos del sistema (compendio de actividades del estudiante y modelo del dominio). El escenario de funcionamiento del MASPLANG está definido por el tipo de usuarios y el tipo de contenidos que ofrece. Como su entorno es un sistema hipermedia educativo, los usuarios se clasifican en profesores quienes definen y preparan los contenidos para el aprendizaje adaptativo, y los estudiantes quienes llevan a cabo las actividades de aprendizaje de forma personalizada. El perfil de aprendizaje inicial del estudiante se captura a través de la evaluación del cuestionario ILS (herramienta de diagnóstico del modelo FSLSM de estilos de aprendizaje adoptado para este estudio) que se asigna al estudiante en su primera interacción con el sistema. Este cuestionario consiste en un conjunto de preguntas de naturaleza sicológica cuyo objetivo es determinar los deseos, hábitos y reacciones del estudiante que orientarán la personalización de los contenidos y del entorno de aprendizaje. El modelo del estudiante se construye entonces teniendo en cuenta este perfil de aprendizaje y el nivel de conocimiento obtenido mediante el análisis de las acciones del estudiante en el entorno.
Resumo:
This paper describes the development and validation of a novel web-based interface for the gathering of feedback from building occupants about their environmental discomfort including signs of Sick Building Syndrome (SBS). The gathering of such feedback may enable better targeting of environmental discomfort down to the individual as well as the early detection and subsequently resolution by building services of more complex issues such as SBS. The occupant's discomfort is interpreted and converted to air-conditioning system set points using Fuzzy Logic. Experimental results from a multi-zone air-conditioning test rig have been included in this paper.
Resumo:
Income growth in highly industrialised countries has resulted in consumer choice of foodstuffs no longer being primarily influenced by basic factors such as price and organoleptic features. From this perspective, the present study sets out to evaluate how and to what extent consumer choice is influenced by the possible negative effects on health and environment caused by the consumption of fruit containing deposits of pesticides and chemical products. The study describes the results of a survey which explores and estimates consumer willingness to pay in two forms: a yearly contribution for the abolition of the use of pesticides on fruit, and a premium price for organically grown apples guaranteed by a certified label. The same questionnaire was administered to two samples. The first was a conventional face-to-face survey of customers of large retail outlets located around Bologna (Italy); the second was an Internet sample. The discrete choice data were analysed by means of probit and tobit models to estimate the utility consumers attribute to organically grown fruit and to a pesticide ban. The research also addresses questions of validity and representativeness as a fundamental problem in web-based surveys.
Resumo:
Background: The high prevalence of physical inactivity worldwide calls for innovative and more effective ways to promote physical activity (PA). There are limited objective data on the effectiveness of Web-based personalized feedback on increasing PA in adults. Objective: It is hypothesized that providing personalized advice based on PA measured objectively alongside diet, phenotype, or genotype information would lead to larger and more sustained changes in PA, compared with nonpersonalized advice. Methods: A total of 1607 adults in seven European countries were randomized to either a control group (nonpersonalized advice, Level 0, L0) or to one of three personalized groups receiving personalized advice via the Internet based on current PA plus diet (Level 1, L1), PA plus diet and phenotype (Level 2, L2), or PA plus diet, phenotype, and genotype (Level 3, L3). PA was measured for 6 months using triaxial accelerometers, and self-reported using the Baecke questionnaire. Outcomes were objective and self-reported PA after 3 and 6 months. Results: While 1270 participants (85.81% of 1480 actual starters) completed the 6-month trial, 1233 (83.31%) self-reported PA at both baseline and month 6, but only 730 (49.32%) had sufficient objective PA data at both time points. For the total cohort after 6 months, a greater improvement in self-reported total PA (P=.02) and PA during leisure (nonsport) (P=.03) was observed in personalized groups compared with the control group. For individuals advised to increase PA, we also observed greater improvements in those two self-reported indices (P=.006 and P=.008, respectively) with increased personalization of the advice (L2 and L3 vs L1). However, there were no significant differences in accelerometer results between personalized and control groups, and no significant effect of adding phenotypic or genotypic information to the tailored feedback at month 3 or 6. After 6 months, there were small but significant improvements in the objectively measured physical activity level (P<.05), moderate PA (P<.01), and sedentary time (P<.001) for individuals advised to increase PA, but these changes were similar across all groups. Conclusions: Different levels of personalization produced similar small changes in objective PA. We found no evidence that personalized advice is more effective than conventional “one size fits all” guidelines to promote changes in PA in our Web-based intervention when PA was measured objectively. Based on self-reports, PA increased to a greater extent with more personalized advice. Thus, it is crucial to measure PA objectively in any PA intervention study.