922 resultados para Wearable substrates


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ferroelectric bismuth vanadate Bi2VO5.5 (BVO) thin films have been grown on LaAlO3 (LAO) and SiO2/Si substrates with LaNiO3 (LNO) base electrodes by the pulsed laser deposition technique. The effect of substrate temperature on the ferroelectric properties of BVO thin films, has been studied by depositing the thin films at different temperatures. The BVO thin films grown on LNO/LAO were textured whereas the thin films grown on LNO/SiO2/Si were polycrystalline. The BVO thin films grown at 450?°C exhibited good ferroelectric properties indicating that LNO acts as a good electrode material. The remanent polarization Pr and coercive field Ec obtained for the BVO thin films grown at 450?°C on LNO/LAO and LNO/SiO2/Si were 2.5 ?C/cm2, 37 kV/cm and 4.6?C/cm2, 93 kV/cm, respectively. © 1995 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

C-70 films deposited on highly oriented pyrolytic graphite (HOPG), Ag(110), Ag(111) and Pt(110) substrates have been investigated by scanning tunnelling microscopy. Interesting observations on novel molecular arrangements, as well as orientational disorder, are presented. Solid solutions of C-60 and C-70 show interesting packing of these molecules when deposited on HOPG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thick films of YBa2Cu3O7-delta fabricated on polycrystalline Ba2RETaO6 (where RE= Pr, Nd, Eu, and Dy) substrates by dip-coating and partial melting techniques are textured and c-axis oriented, showing predominantly (00l) orientation. All the thick films show a superconducting zero resistance transition of 90 K. SEM studies clearly indicate platelike and needlelike grain growth over a wide area of the thick films. The values of the critical current density for these thick films are similar to 10(4) A/cm(2) at 77 K as determined by the nonresonant R.F. absorption method. Various processing conditions that affect the critical current density of thick films are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the microstructure of thin films grown by metal-organic chemical vapour deposition using a beta-diketonate complex of cobalt, namely cobalt (11) acetylacetonate. Films were deposited on three different substrates: Si(100), thermally oxidised silicon [SiO2/Si(100)] and glass at the same time. As-grown films were characterised by X-ray diffraction, scanning electron microscopy, scanning tunnelling microscopy, atomic force microscopy and secondary ion mass spectrometry. Electrical resistivity was measured for all the films as a function of temperature. We found that films have very fine grains, resulting in high electrical resistivity Further, film microstructure has a strong dependence on the nature of the substrate and there is diffusion of silicon and oxygen into cobalt from the substrate. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GaAs/Ge heterostructures having abrupt interfaces were grown on 2degrees, 6degrees, and 9degrees off-cut Ge substrates and investigated by cross-sectional high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy, photoluminescence spectroscopy and electrochemical capacitance voltage (ECV) profiler. The GaAs films were grown on off-oriented Ge substrates with growth temperature in the range of 600-700degreesC, growth rate of 3-12 mum/hr and a V/III ratio of 29-88. The lattice indexing of HRTEM exhibits an excellent lattice line matching between GaAs and Ge substrate. The PL spectra from GaAs layer on 6degrees off-cut Ge substrate shows the higher excitonic peak compared with 2degrees and 9degrees off-cut Ge substrates. In addition, the luminescence intensity from the GaAs solar cell grown on 6degrees off-cut is higher than on 9degrees off-cut Ge substrates and signifies the potential use of 6degrees off-cut Ge substrate in the GaAs solar cells industry. The ECV profiling shows an abrupt film/substrate interface as well as between various layers of the solar cell structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

YMnO3 thin films were grown on an n-type Si substrate by nebulized spray pyrolysis in the metal-ferroelectric-semiconductor (MFS) configuration. The capacitance-voltage characteristics of the film in the MFS structure exhibit hysteretic behaviour consistent with the polarization charge switching direction, with the memory window decreasing with increase in temperature. The density of the interface states decreases with increasing annealing temperature. Mapping of the silicon energy band gap with the interface states has been carried out. The leakage current, measured in the accumulation region, is lower in well-crystallized thin films and obeys a space-charge limited conduction mechanism. The calculated activation energy from the dc leakage current characteristics of the Arrhenius plot reveals that the activation energy corresponds to oxygen vacancy motion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a simple strategy of obtaining clean, ultrathin single crystal Au nanowires on substrates and interconnecting pre-defined contacts with an insight into the growth mechanism. The pristine nature enables electron transport measurement through such ultrathin wires and opens up possibilities of exploring its properties for a wide range of applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured TiO2 is one of the most commonly used materials in photocatalytic applications and photochemical solar cells. This article describes a method to synthesize nanoporous anatase TiO2 membranes directly on stainless steel (SS), an easily available substrate by anodization to form amorphous TiO2 and a subsequent heat treatment to convert it into anatase, the photoactive phase. To obtain adherent membranes with interfaces that are resistant to peeling, both anodization and heat treatment parameters need to be optimized to obtain a heterostructure that contains a Ti film between the TiO2 membrane and the substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The titled approaches were effected with various 2-substituted benzoylacetic acid oximes 3 (Beckmann) and 2-substituted malonamic acids 9 (Hofmann), their carboxyl groups being masked as a 2,4,10-trioxaadamantane unit (an orthoacetate). The oxime mesylates have been rearranged with basic Al2O3 in refluxing CHCl3, and the malonamic acids with phenyliodoso acetate and KOH/MeOH. Both routes are characterized by excellent overall yields. Structure confirmation of final products was conducted with X-ray diffraction in selected cases. The final N-benzoyl and N-(methoxycarbonyl) products are alpha-amino acids with both carboxyl and amino protection; hence, they are of great interest in peptide synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding and controlling growth stress is a requisite for integrating oxides with Si. Yttria stabilized zirconia (YSZ) is both an important functional oxide and a buffer layer material needed for integrating other functional oxides. Stress evolution during the growth of (100) and (111) oriented YSZ on Si (100) by radio frequency and reactive direct current sputtering has been investigated with an in-situ monitor and correlated with texture evolution. Films nucleated at rates <5 nm/min are found to be (111) oriented and grow predominantly under a compressive steady state stress. Films nucleated at rates >20 nm/min are found to be (100) oriented and grow under tension. A change in growth rate following the nucleation stage does not change the orientation. The value of the final steady state stress varies from -4.7 GPa to 0.3 GPa. The in-situ studies show that the steady state stress generation is a dynamic phenomenon occurring at the growth surface and not decided at film nucleation. The combination of stress evolution and texture evolution data shows that the adatom injection into the grain boundaries is the predominant source of compressive stress and grain boundary formation at the growth surface is the source of tensile stress. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4757924]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly stable, branched gold nanoworms are formed spontaneously in an acetamide-based room temperature molten solvent without any additional external stabilizing or aggregating agent. The nanoworms can be anchored onto solid substrates such as indium tin oxide (ITO) without any change in morphology. The anchored nanoworms are explored as substrates for surface enhanced Raman scattering (SERS) studies using non-fluorescent 4-mercaptobenzoic acid (4-MBA) and fluorescent rhodamine 6G (R6G) as probe molecules. The anchored nanostructured particles respond to near IR (1064 nm) as well as visible (785, 632.8 and 514 nm) excitation lasers and yield good surface enhancement in Raman signals. Enhancement factors of the order 10(6)-10(7) are determined for the analytes using a 1064 nm excitation source. Minimum detection limits based on adsorption from ethanolic solutions of 1028 M 4-MBA and aqueous solutions of 1027 M R6G are achieved. Experimental Raman frequencies and frequencies estimated by DFT calculations are in fairly good agreement. SERS imaging of the nanostructures suggests that the substrates comprising of three dimensional, highly interlinked particles are more suited than particles fused in one dimension. The high SERS activity of the branched nanoworms may be attributed to both electromagnetic and charge transfer effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite considerable research to develop carbon based materials for biomedical applications, the toxicity of carbon remains a major concern. In order to address this issue as well as to investigate the cell fate processes of neural cells from the perspective of neural tissue engineering applications, the in vitro cytocompatibility of polyacrylonitrile (PAN) derived continuous carbon nanofibers and PAN derived carbon thin films were investigated both quantitatively and qualitatively using in vitro biochemical assays followed by extensive flow cytometry analysis. The experimental results of Schwann cell fate, i.e. cell proliferation, cell metabolic activity and cell apoptosis on amorphous carbon substrates are discussed in reference to the time dependent evolution of intracellular oxidative stress. Apart from providing evidence that an electrospun carbon nanofibrous substrate can physically guide the cultured Schwann cells, this study suggested that continuous carbon nanofibers and amorphous carbon films are not cytotoxic in vitro and do not significantly induce apoptosis of Schwann cells, but in fact even facilitate their proliferation and growth.