916 resultados para Wavelets and fast transform eavelet


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research investigates the fuel property variations associated with the time of harvest and the duration of storage of Miscanthus x giganteus over a one year period. The crop has been harvested at three different times: early (September 2009), conventional (April 2010) and late (June 2010). Once harvested the crop was baled and stored. Biomass properties of samples taken from different storage zones were compared. The thermochemical properties have been investigated using a range of analytical equipment including thermogravimetric analysis (TGA) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). In addition, bio-oil has been produced from the early, conventional and late harvest using a laboratory scale (300gh) fast pyrolysis unit. The potential organic liquid yield (ondry basis, also excluding the reaction water generated) based on the laboratory fast pyrolysis processing undertaken in this study, was found to vary between 2.82 and 3.18 dry tha for the early and the late harvest respectively. The bio-oil organic yield was reduced by approximately 11% (0.36tha) between the early and the late harvest. Char yield was also reduced by approximately 18% (0.61tha). The highest gas yield (18.03%-1.60tha) was observed for the conventional harvest. Gas chromatography-mass spectrometry (GC-MS) analysis of the bio-oil shows that levoglucosan, methylbenzaldehyde and 1,2-benzenediol all increase as a consequence of delayed harvest. It was also observed that by delaying the harvest time the O:C atomic ratio is reduced and a more carbonaceous feedstock is produced. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research takes a dynamic view on the knowledge coordination process, aiming to explain how the process is affected by changes in the operating environment, from normal situations to emergencies in traditional and fast-response organizations, and why these changes occur. We first conceptualize the knowledge coordination process by distinguishing between four dimensions - what, when, how and who - that together capture the full scope of the knowledge coordination process. We use these dimensions to analyze knowledge coordination practices and the activities constituting these practices, in the IT functions of traditional and fast-response (military) organizations where we distinguish between "normal" and "emergency" operating conditions. Our findings indicate that (i) inter-relationships between knowledge coordination practices change under different operating conditions, and (ii) the patterns of change are different in traditional and fast-response organizations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of vacuum, slow and fast pyrolysis processes to transfer energy from the paper waste sludge (PWS) to liquid and solid products was compared. Paper waste sludges with low and high ash content (8.5 and 46.7 wt.%) were converted under optimised conditions for temperature and pellet size to maximise both product yields and energy content. Comparison of the gross energy conversions, as a combination of the bio-oil/tarry phase and char (ECsum), revealed that the fast pyrolysis performance was between 18.5% and 20.1% higher for the low ash PWS, and 18.4% and 36.5% higher for high ash PWS, when compared to the slow and vacuum pyrolysis processes respectively. For both PWSs, this finding was mainly attributed to higher production of condensable organic compounds and lower water yields during FP. The low ash PWS chars, fast pyrolysis bio-oils and vacuum pyrolysis tarry phase products had high calorific values (∼18-23 MJ kg-1) making them promising for energy applications. Considering the low calorific values of the chars from alternative pyrolysis processes (∼4-7 MJ kg-1), the high ash PWS should rather be converted to fast pyrolysis bio-oil to maximise the recovery of usable energy products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type systems for secure information flow aim to prevent a program from leaking information from H (high) to L (low) variables. Traditionally, bisimulation has been the prevalent technique for proving the soundness of such systems. This work introduces a new proof technique based on stripping and fast simulation, and shows that it can be applied in a number of cases where bisimulation fails. We present a progressive development of this technique over a representative sample of languages including a simple imperative language (core theory), a multiprocessing nondeterministic language, a probabilistic language, and a language with cryptographic primitives. In the core theory we illustrate the key concepts of this technique in a basic setting. A fast low simulation in the context of transition systems is a binary relation where simulating states can match the moves of simulated states while maintaining the equivalence of low variables; stripping is a function that removes high commands from programs. We show that we can prove secure information flow by arguing that the stripping relation is a fast low simulation. We then extend the core theory to an abstract distributed language under a nondeterministic scheduler. Next, we extend to a probabilistic language with a random assignment command; we generalize fast simulation to the setting of discrete time Markov Chains, and prove approximate probabilistic noninterference. Finally, we introduce cryptographic primitives into the probabilistic language and prove computational noninterference, provided that the underling encryption scheme is secure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seafood products fraud, the misrepresentation of them, have been discovered all around the world in different forms as false labeling, species substitution, short-weighting or over glazing in order to hide the correct identity, origin or weight of the seafood products. Due to the value of seafood products such as canned tuna, swordfish or grouper, these species are the subject of the commercial fraud is mainly there placement of valuable species with other little or no value species. A similar situation occurs with the shelled shrimp or shellfish that are reduced into pieces for the commercialization. Food fraud by species substitution is an emerging risk given the increasingly global food supply chain and the potential food safety issues. Economic food fraud is committed when food is deliberately placed on the market, for financial gain deceiving consumers (Woolfe, M. & Primrose, S. 2004). As a result of the increased demand and the globalization of the seafood supply, more fish species are encountered in the market. In this scenary, it becomes essential to unequivocally identify the species. The traditional taxonomy, based primarily on identification keys of species, has shown a number of limitations in the use of the distinctive features in many animal taxa, amplified when fish, crustacean or shellfish are commercially transformed. Many fish species show a similar texture, thus the certification of fish products is particularly important when fishes have undergone procedures which affect the overall anatomical structure, such as heading, slicing or filleting (Marko et al., 2004). The absence of morphological traits, a main characteristic usually used to identify animal species, represents a challenge and molecular identification methods are required. Among them, DNA-based methods are more frequently employed for food authentication (Lockley & Bardsley, 2000). In addition to food authentication and traceability, studies of taxonomy, population and conservation genetics as well as analysis of dietary habits and prey selection, also rely on genetic analyses including the DNA barcoding technology (Arroyave & Stiassny, 2014; Galimberti et al., 2013; Mafra, Ferreira, & Oliveira, 2008; Nicolé et al., 2012; Rasmussen & Morrissey, 2008), consisting in PCR amplification and sequencing of a COI mitochondrial gene specific region. The system proposed by P. Hebert et al. (2003) locates inside the mitochondrial COI gene (cytochrome oxidase subunit I) the bioidentification system useful in taxonomic identification of species (Lo Brutto et al., 2007). The COI region, used for genetic identification - DNA barcode - is short enough to allow, with the current technology, to decode sequence (the pairs of nucleotide bases) in a single step. Despite, this region only represents a tiny fraction of the mitochondrial DNA content in each cell, the COI region has sufficient variability to distinguish the majority of species among them (Biondo et al. 2016). This technique has been already employed to address the demand of assessing the actual identity and/or provenance of marketed products, as well as to unmask mislabelling and fraudulent substitutions, difficult to detect especially in manufactured seafood (Barbuto et al., 2010; Galimberti et al., 2013; Filonzi, Chiesa, Vaghi, & Nonnis Marzano, 2010). Nowadays,the research concerns the use of genetic markers to identify not only the species and/or varieties of fish, but also to identify molecular characters able to trace the origin and to provide an effective control tool forproducers and consumers as a supply chain in agreementwith local regulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The power transformer is a piece of electrical equipment that needs continuous monitoring and fast protection since it is very expensive and an essential element for a power system to perform effectively. The most common protection technique used is the percentage differential logic, which provides discrimination between an internal fault and different operating conditions. Unfortunately, there are some operating conditions of power transformers that can affect the protection behavior and the power system stability. This paper proposes the development of a new algorithm to improve the differential protection performance by using fuzzy logic and Clarke`s transform. An electrical power system was modeled using Alternative Transients Program (ATP) software to obtain the operational conditions and fault situations needed to test the algorithm developed. The results were compared to a commercial relay for validation, showing the advantages of the new method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a new methodology to compute Value at Risk (VaR) for quantifying losses in credit portfolios. We approximate the cumulative distribution of the loss function by a finite combination of Haar wavelet basis functions and calculate the coefficients of the approximation by inverting its Laplace transform. The Wavelet Approximation (WA) method is specially suitable for non-smooth distributions, often arising in small or concentrated portfolios, when the hypothesis of the Basel II formulas are violated. To test the methodology we consider the Vasicek one-factor portfolio credit loss model as our model framework. WA is an accurate, robust and fast method, allowing to estimate VaR much more quickly than with a Monte Carlo (MC) method at the same level of accuracy and reliability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural networks and wavelet transform have been recently seen as attractive tools for developing eficient solutions for many real world problems in function approximation. Function approximation is a very important task in environments where computation has to be based on extracting information from data samples in real world processes. So, mathematical model is a very important tool to guarantee the development of the neural network area. In this article we will introduce one series of mathematical demonstrations that guarantee the wavelets properties for the PPS functions. As application, we will show the use of PPS-wavelets in pattern recognition problems of handwritten digit through function approximation techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 42A38, 42C40, 33D15, 33D60

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The classical approach for acoustic imaging consists of beamforming, and produces the source distribution of interest convolved with the array point spread function. This convolution smears the image of interest, significantly reducing its effective resolution. Deconvolution methods have been proposed to enhance acoustic images and have produced significant improvements. Other proposals involve covariance fitting techniques, which avoid deconvolution altogether. However, in their traditional presentation, these enhanced reconstruction methods have very high computational costs, mostly because they have no means of efficiently transforming back and forth between a hypothetical image and the measured data. In this paper, we propose the Kronecker Array Transform ( KAT), a fast separable transform for array imaging applications. Under the assumption of a separable array, it enables the acceleration of imaging techniques by several orders of magnitude with respect to the fastest previously available methods, and enables the use of state-of-the-art regularized least-squares solvers. Using the KAT, one can reconstruct images with higher resolutions than was previously possible and use more accurate reconstruction techniques, opening new and exciting possibilities for acoustic imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Part I [""Fast Transforms for Acoustic Imaging-Part I: Theory,"" IEEE TRANSACTIONS ON IMAGE PROCESSING], we introduced the Kronecker array transform (KAT), a fast transform for imaging with separable arrays. Given a source distribution, the KAT produces the spectral matrix which would be measured by a separable sensor array. In Part II, we establish connections between the KAT, beamforming and 2-D convolutions, and show how these results can be used to accelerate classical and state of the art array imaging algorithms. We also propose using the KAT to accelerate general purpose regularized least-squares solvers. Using this approach, we avoid ill-conditioned deconvolution steps and obtain more accurate reconstructions than previously possible, while maintaining low computational costs. We also show how the KAT performs when imaging near-field source distributions, and illustrate the trade-off between accuracy and computational complexity. Finally, we show that separable designs can deliver accuracy competitive with multi-arm logarithmic spiral geometries, while having the computational advantages of the KAT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proceedings of the International Conference on Computational Intelligence in Medicine Healthcare, CIMED 2005, Costa da Caparica, June 29 - July 1, 2005

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD4 expression in HIV replication is paradoxical: HIV entry requires high cell-surface CD4 densities, but replication requires CD4 down-modulation. However, is CD4 density in HIV+ patients affected over time? Do changes in CD4 density correlate with disease progression? Here, we examined the role of CD4 density for HIV disease progression by longitudinally quantifying CD4 densities on CD4+ T cells and monocytes of ART-naive HIV+ patients with different disease progression rates. This was a retrospective study. We defined three groups of HIV+ patients by their rate of CD4+ T cell loss, calculated by the time between infection and reaching a CD4 level of 200 cells/microl: fast (<7.5 years), intermediate (7.5-12 years), and slow progressors (>12 years). Mathematical modeling permitted us to determine the maximum CD4+ T cell count after HIV seroconversion (defined as "postseroconversion CD4 count") and longitudinal profiles of CD4 count and density. CD4 densities were quantified on CD4+ T cells and monocytes from these patients and from healthy individuals by flow cytometry. Fast progressors had significantly lower postseroconversion CD4 counts than other progressors. CD4 density on T cells was lower in HIV+ patients than in healthy individuals and decreased more rapidly in fast than in slow progressors. Antiretroviral therapy (ART) did not normalize CD4 density. Thus, postseroconversion CD4 counts define individual HIV disease progression rates that may help to identify patients who might benefit most from early ART. Early discrimination of slow and fast progressors suggests that critical events during primary infection define long-term outcome. A more rapid CD4 density decrease in fast progressors might contribute to progressive functional impairments of the immune response in advanced HIV infection. The lack of an effect of ART on CD4 density implies a persistent dysfunctional immune response by uncontrolled HIV infection.