986 resultados para Water Framework Directive
Resumo:
Conservation of the seven lagoons of the Palavas complex (southern France) has been severely impaired by nutrient over-enrichment during at least four decades. The effluents of the Montpellier wastewater treatment plant (WWTP) represented the main nutrient input. To improve the water quality of these lagoons, this WWTP was renovated and upgraded and, since the end of 2005, its effluents have been discharged 11 km offshore into the Mediterranean (total investment €150 M). Possibilities of ecosystem restoration as part of a conservation programme were explored by a focus group of experts. Their tasks were: (i) to evaluate the impact of the reduction of the nutrient input; (ii) if necessary, to design additional measures for an active restoration programme; and (iii) to predict ecosystem trajectories for the different cases. Extension of Magnoliophyta meadows can be taken as a proxy for ecosystem restoration as they favour the increase of several fish (seahorse) and bird (ducks, swans, herons) species, albeit they represent a trade-off for greater flamingos. Additional measures for active ecosystem restoration were only recommended for the most impaired lagoon Méjean, while the least impaired lagoon Ingril is already on a trajectory of spontaneous recovery. A multiple contingent valuation considering four different management options for the Méjean lagoon was used in a pilot study based on face-to-face interviews with 159 respondents. Three levels of ecosystem restoration were expressed in terms of recovery of Magnoliophyta meadows, including their impact on emblematic fish and avifauna. These were combined with different options for access (status quo, increasing access, increasing access with measures to reduce disturbance). The results show a willingness of local populations to pay per year about €25 for the highest level of ecological restoration, while they were only willing to allocate about €5 for additional footpaths and hides.
Resumo:
Freshwater mussel (Mollusca, Bivalvia, Unionoida) populations are one of the most endangered faunistic groups. Mussels play an important role in the functioning of aquatic ecosystems, because they are responsible for the filtration and purification of water. They have a complex life cycle, with a parasitic larvae and usually limited host fish species. The real status of these populations is still poorly understood worldwide. The objectives of the present work were the study of bioecology of duck mussel (Anodonta anatina L.) populations of Tua Basin (NE Portugal). It was made the characterization of the ecological status of Rabaçal, Tuela and Tua Rivers, selecting 15 sampling sites, equally distributed by the three rivers. Samplings were made in the winter of 2016, and several physico-chemical water parameters measured and two habitat quality indexes calculated (GQC and QBR indexes). Benthic macroinvertebrate communities were sampled based on the protocols established by the Water Framework Directive. Host fish populations for duck mussel were determined in laboratorial conditions, testing several native and exotic fish species. The results showed that several water quality variables (e.g. dissolved oxygen, conductivity, pH, total dissolved solids, and nutrients) can be used for the classification of river typology. Other responsive metrics were also determined to identify environmental degradation. For instances, hydromorphological conditions (GQC and QBR indexes) and biota related metrics (e.g. composition, distribution, abundance, diversity of invertebrate communities) contributed to the evaluation of the ecological integrity. The upper zones of Rabaçal and Tuela rivers were classified with excellent and good ecological integrity, while less quality was found in downstream zones. The host fish tests showed that only native species are effective hosts, essential for the conservation purposes of this mussel species. Threats, like pollution, sedimentation and river regularization (3 big dams are in construction or in filling phase), are the main cause of habitat loss for native mussel and fish populations in the future. Rehabilitation and mitigation measures are essential for these lotic ecosystems in order to preserve the prioritary habitats and the native species heavily threatened.
Resumo:
Aquatic ecosystems are final collectors of all kinds of pollution as an outcome of anthropogenic inputs, such us untreated industrial and municipal sewage and agricultural pollutants. There are several aquatic ecosystems that are threatened by mineral and organic pollution. In Northeastern Portugal, near Bragança, different watercourses are suffering negative impacts of human activities. It has been developed several studies in the monitoring of environmental impacts in these river basins, namely in Rio Fervença, affected by organic pollution, and in Portelo stream, affected, since 2009, by the collapse and continuous input of mining deposits. In this sense, the present study aimed to continue the monitoring study of ecological status of freshwater ecosystems of Northeastern Portugal, namely the following objectives: a) mineral pollution effects of mining deposits sudden incorporated into Portelo stream; b) organic pollution due to domestic and industrial inputs in River Fervença. Also, since fish are useful experimental models to evaluate toxicological mechanisms of contaminants, c) acute toxicity tests with Cu were conducted in laboratory conditions. During 2015/2016, it was made abiotic and biotic characterization of 16 sampling sites distributed by both Portelo and Fervença rivers, tributaries of main River Sabor (Douro Basin). Several physicochemical parameters were determined and Riparian Quality (QBR Index) and Channel Quality (GQC) Indexes were determined for habitat evaluation. Fish and invertebrate communities were sampled, according to protocols of Water Framework Directive (WFD). Several metrics were determined, with particular emphasis on the Biotic Index IBMWP and the Northern Portuguese Invertebrate Index (IPtIN). Acute toxicity tests were conducted with an Iberian fish species, common barbel (Luciobarbus bocagei) and some plasmatic electrolytes levels were evaluated, to assess their contribution to mitigate osmoregulatory adverse effects of Cu. Also, same electrolytes were measured after changing to clean water, in attempt to assess fish capacity to reverse this situation. Results obtained for both rivers showed a significant level of disturbance that affected decisively water, habitat and biological quality of aquatic ecosystems. Mineral and Organic Pollution in River Sabor (NE Portugal): Ecotoxicological Effects on Freshwater Fauna Due to this change of environmental conditions in Portelo stream (extreme pH values, high conductivity and presence of heavy metals), several biological metrics (e.g. taxonomic richness, abundance, diversity, evenness) confirmed, comparatively with reference sites, a substantial decrease on ecological integrity status. The same pattern was found for Fervença River; however other water parameters, namely the content of most limiting nutrients (e.g. N and P) seemed to have more influence in the composition and structure of macroinvertebrate and fish communities. In fact, despite the operation of the Sewage Treatment Plant of Bragança, Fervença River presented significant levels of disturbance that affected decisively the quality and ecological integrity of the aquatic ecosystem. The synergic effect of domestic and industrial pollution, intensive agriculture, regulation and degradation of aquatic and riparian habitats contributed to the decrease of ecological condition, namely in the downstream zones (after Bragança). The results for acute toxicity, showed that fish can change Na+ and K+ levels face to Cu exposition and, depending of Cu concentration tested, can also return to normal levels, providing some insights to that are believed to occurred in fish population, near the Portelo mines. The low ecological integrity status detected in the lotic ecosystems in NE Portugal as a result of mineral and organic pollution deserves the development of several measures for rehabilitation and improving of water quality. On the other hand, environmental education actions are needed to contribute to improvement of ecological integrity of the river and its conservation.
Resumo:
Based on 3 metrics ("taxonomy", "extension" and "abundance"), the quality index of the water body FRFT8 – Bidassoa - Type T03 for the angiosperm indicator, was "good", the same as 2014. As last year, the seagrass bed moved and the grid will probably be displaced in 2016.
Resumo:
To determine good ecological status and conservation of the Sub-Marine area of the Bay of Biscay, the implementation of a new rocky intertidal habitats monitoring is needed. A protocol has been adapted from the Brittany protocol for the water body FRFC11 "Basque coast" for the two indicators "intertidal macroalgae" and "subtidal macroalgae" under the Water Framework Directive to qualify the ecological. However no protocol has been validated for fauna in front of meridional characters of the benthic communities. Investigations carried out on macroalgae communities on intertidal area in WFD framework, since 2008, constitute an important working basis. This is the aim of the Bigorno project (Intertidal Biodiversity of the south of the Bay of Biscay and Observation for New search and Monitoring for decision support), financed by the Agency of Marine Protected Areas and the Departmental Council. To implement knowledge, a sampling protocol has been used in 2015 on the boulder fields of Guéthary. This site is part of Natura 2000 area "rocky Basque coast and offshore extension "It constitutes also a Znieff site and restricted fishing area. The sampling strategy considers the heterogeneity of substrates and the presence of intertidal microhabitats. Two main habitats are present: "mediolittoral rock in exposed area habitat" and "boulder fields". Habitat "intertidal pools and permanent ponds" is also present but, it is not investigated. Sampling effort is of 353 quadrats of 0.1 m², drawn randomly according to a spatially stratified sampling plan, defined by habitat and algal belts. Taxa identification and enumeration are done on each quadrat. The objective of this work is to expose results from data collected during 2015 sampling program. The importance of characterizing benthic fauna communities spatial distribution belonging to the Basque coast according to algal belts defines during the WDF survey was highlighted. Concurrently, indicators of biodiversity were studied.
Resumo:
During recent decades, works on rocky shore biodiversity have been multiplied in the southern part of the Bay of Biscay and more precisely on intertidal and subtidal area were communities present a great interest. Necessity of conservation of coastal habitats and their communities and a growing pressure on coastal environments explain awareness of services provided by these ecosystems. Those communities are very sensitive to water quality change. Moreover, since the beginning of the XXI century various European directives require a good ecological status of coastal waters and conservation of their communities : Water Framework Directive (WFD), Marine Strategy Framework Directive (MSFD) and conservation of habitats with Directive Habitat Fauna and Flora (DHFF).... Integrated environmental status assessment approach is needed for this requirement in front of specific component at the regional scale of the Bay of Biscay. This analyze, at this regional scale, bring a particular interest to follow some biological groups in front of their ecological sensitivity. Among them, some example are listed like algae, invertebrate as species of mollusc opistobranch and fishes of the family blennidae are targets of interest for future monitoring. The biogeographic specificity of species of these groups is to present strong ecological requirements, in a trophic point of view for example, as well as boundary in local distribution in the southern part of the Bay of Biscay. Thus, monitoring of their distribution and abundance should be a relevant indicator of environmental change. If the presence of individuals is relatively easy to implement, monitoring in terms of abundance are more complex to develop to obtain representative data in coastal areas. The mobile character of the individual and their high location variability based on fluctuating environmental conditions is a challenge that needs to be considered. Interest concerns both the development of their number and their migration to the north for species in northern limit, and/or disappearance for species in southern distribution limits. Moreover, acquisition of knowledge on the taxonomy of local species is a way to improve biodiversity knowledge and assessment of global change as climatic change.
Resumo:
The Water Framework Directive uses the “One-out, all-out” (OAOO) principle in assessing water bodies (i.e. the worst status of the elements used in the assessment determines the final status of the water body). Combination of multiple parameters within a biological quality element (BQEs) can be done in different ways. This study analysed several aggregation conditions within the BQE "Flora other than phytoplankton" (intertidal macroalgae, subtidal macroalgae, eelgrass beds and opportunistic blooms) using monitoring data collected along the Channel and Atlantic coastline. Four aggregation criteria were tested on two sets of data collected between 2004 and 2014: OOAO, average, intermediate method between OOAO and average and a method taking into account an uncertainty value at the threshold "Good/Moderate." Based on available data, the intermediate method appears the most qualified method using first an averaging approach between the natural habitat elements and then applying the OAOO between this mean and the opportunistic blooms, characteristic of an eutrophic environment. Expert judment might be used to ensure in the overall interpretation of results at waterbody level and in the classification outcomes.
Resumo:
A nautical drone was designed for the monitoring of estuarine and coastal waters in the context of the Water Framework Directive (WFD) to : - go up to 500 m off the coastline in less than 5 minutes, - perform in situ measurements (temperature, salinity, turbidity), - collect water samples for later analysis in the laboratory (phytoplankton identification, chlorophyll, nutrients, ...).
Resumo:
The assessment of water quality has changed markedly worldwide over the last years, especially in Europe due to the implementation of the Water Framework Directive. Fish was considered a key-element in this context and several fish-based multi-metric indices have been proposed. In this study, we propose a multi-metric index, the Estuarine Fish Assessment Index (EFAI), developed for Portuguese estuaries, designed for the overall assessment of transitional waters, which could also be applied at the water body level within an estuary. The EFAI integrates seven metrics: species richness, percentage of marine migrants, number of species and abundance of estuarine resident species, number of species and abundance of piscivorous species, status of diadromous species, status of introduced species and status of disturbance sensitive species. Fish sampling surveys were conducted in 2006, 2009 and 2010, using beam trawl, in 13 estuarine systems along the Portuguese coast. Most of the metrics presented a high variability among the transitional systems surveyed. According to the EFAI values, Portuguese estuaries presented a "Good" water quality status (except the Douro in a particular year). The assessments in different years were generally concordant, with a few exceptions. The relationship between the EFAI and the Anthropogenic Pressure Index (API) was not significant, but a negative and significant correlation was registered between the EFAI and the expert judgement pressure index, at both estuary and water body level. The ordination analysis performed to evaluate similarities among North-East Atlantic Geographical Intercalibration Group (NEAGIG) fish-based indices put in evidence four main groups: the French index, since it is substantially different from all the other indices (uses only four metrics based on densities); indices from Ireland, United Kingdom and Spain (Asturias and Cantabria); the Dutch and German indices; and the indices of Belgium. Portugal and Spain (Basque country). The need for detailed studies, including comparative approaches, on several aspects of these assessment tools, especially in what regards their response to anthropogenic pressures was stressed. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Many maritime countries in Europe have implemented marine environmental monitoring programmes which include the measurement of chemical contaminants and related biological effects. How best to integrate data obtained in these two types of monitoring into meaningful assessments has been the subject of recent efforts by the International Council for Exploration of the Sea (ICES) Expert Groups. Work within these groups has concentrated on defining a core set of chemical and biological endpoints that can be used across maritime areas, defining confounding factors, supporting parameters and protocols for measurement. The framework comprised markers for concentrations of, exposure to and effects from, contaminants. Most importantly, assessment criteria for biological effect measurements have been set and the framework suggests how these measurements can be used in an integrated manner alongside contaminant measurements in biota, sediments and potentially water. Output from this process resulted in OSPAR Commission (www.ospar.org) guidelines that were adopted in 2012 on a trial basis for a period of 3 years. The developed assessment framework can furthermore provide a suitable approach for the assessment of Good Environmental Status (GES) for Descriptor 8 of the European Union (EU) Marine Strategy Framework Directive (MSFD).
Resumo:
The determination of gross alpha, gross beta and 226Ra activity in natural waters is useful in a wide range of environmental studies. Furthermore, gross alpha and gross beta parameters are included in international legislation on the quality of drinking water [Council Directive 98/83/EC].1 In this work, a low-background liquid scintillation counter (Wallac, Quantulus 1220) was used to simultaneously determine gross alpha, gross beta and 226Ra activity in natural water samples. Sample preparation involved evaporation to remove 222Rn and its short-lived decay daughters. The evaporation process concentrated the sample ten-fold. Afterwards, a sample aliquot of 8 mL was mixed with 12 mL of Ultima Gold AB scintillation cocktail in low-diffusion vials. In this study, a theoretical mathematical model based on secular equilibrium conditions between 226Ra and its short-lived decay daughters is presented. The proposed model makes it possible to determine 226Ra activity from two measurements. These measurements also allow determining gross alpha and gross beta simultaneously. To validate the proposed model, spiked samples with different activity levels for each parameter were analysed. Additionally, to evaluate the model's applicability in natural water, eight natural water samples from different parts of Spain were analysed. The eight natural water samples were also characterised by alpha spectrometry for the naturally occurring isotopes of uranium (234U, 235U and 238U), radium (224Ra and 226Ra), 210Po and 232Th. The results for gross alpha and 226Ra activity were compared with alpha spectrometry characterization, and an acceptable concordance was obtained.
Resumo:
The determination of gross alpha, gross beta and 226Ra activity in natural waters is useful in a wide range of environmental studies. Furthermore, gross alpha and gross beta parameters are included in international legislation on the quality of drinking water [Council Directive 98/83/EC].1 In this work, a low-background liquid scintillation counter (Wallac, Quantulus 1220) was used to simultaneously determine gross alpha, gross beta and 226Ra activity in natural water samples. Sample preparation involved evaporation to remove 222Rn and its short-lived decay daughters. The evaporation process concentrated the sample ten-fold. Afterwards, a sample aliquot of 8 mL was mixed with 12 mL of Ultima Gold AB scintillation cocktail in low-diffusion vials. In this study, a theoretical mathematical model based on secular equilibrium conditions between 226Ra and its short-lived decay daughters is presented. The proposed model makes it possible to determine 226Ra activity from two measurements. These measurements also allow determining gross alpha and gross beta simultaneously. To validate the proposed model, spiked samples with different activity levels for each parameter were analysed. Additionally, to evaluate the model's applicability in natural water, eight natural water samples from different parts of Spain were analysed. The eight natural water samples were also characterised by alpha spectrometry for the naturally occurring isotopes of uranium (234U, 235U and 238U), radium (224Ra and 226Ra), 210Po and 232Th. The results for gross alpha and 226Ra activity were compared with alpha spectrometry characterization, and an acceptable concordance was obtained.
Resumo:
Large marine areas and regional seas present a challenge in terms of management. They are often bordered by numerous maritime jurisdictions; with multi-use and multi-sector environments; involving varying governance arrangements; and generation of sufficient levels of data to best inform decision-makers. Marine management at the regional scale involves a range of mechanisms and approaches to ensure all relevant stakeholders have an opportunity to engage in the process; and these approaches can differ in their legal and regulatory conditions. At present, no such comparable structures exist at the transnational level for the ecosystem-based management of the Celtic Sea. Against this backdrop, a participative process, involving representatives from differing sectors of activity in the Celtic Sea spanning four Member States, was established for the purpose of identifying realistic and meaningful management principles in line with the goals of the Marine Strategy Framework Directive.
Resumo:
Posidonia oceanica is a Mediterranean endemic seagrass species that forms meadows covering ca. 2.5–4.5 millions of hectares, representing ca.25 % of the infralittoral and shallow circalittoral (down to 50m) bottoms of the Mediterranean. This seagrass is considered a habitat-engineer species and provides an elevated number of ecosystem services. In addition the Marine Strategy Framework Directive (MSFD, 2008/56/EC) includes seagrass like elements to evaluate the “Good Environmental Status” of the European coasts. Information about their phenological characteristic and structure of the meadows is needed for indicator estimations in order to establish their conservation status. The studied meadows are located in the westernmost limit of the P. oceanica distribution (North-western Alboran Sea) in the vecinity of the Strait of Gibraltar, an Atlantic-Mediterranean water transition area. Four sites were selected from East to West: Paraje Natural de Acantilados de Maro-Cerro Gordo (hereafter Maro), Special Area of Conservation “Calahonda” (hereafter Calahonda), Site of Community Importance Estepona (hereafter Estepona) and Punta Chullera (hereafter Chullera) where P. oceanica present their westernmost meadows. Phenological data were recorded from mid November to mid December in P. oceanica patches located at 2 – 3 m depth. At each site three types of patches (patch area <1m2, small patches; 1-2 m2, medium patches and >2 m2, large patches) were sampled. At each patch and site, 3 quadrants of 45 x 45 cm were sampled for shoot and inflorescences density measurements. In each quadrant, 10 random shoots were sampled for shoot morphology (shoot height and number of leaves). Shoot and inflorescences densities were standardized to squared meters. All the studied P. oceanica meadows develop on rocks and they present a fragmented structure with a coverage ranging between ca. 45% in Calahonda and Estepona and ca. 31% in Maro. The meadows of Chullera are reduced to a few small - medium patches with areas ranging between 0.5-1.5 m2 (Fig. 1). The meadows of Chullera and Estepona presented similar values of shoot density (ca. 752 – 662 shoots m-2, respectively) and leaf height (ca. 25 cm). Similarly, the Calahonda and Maro meadows also showed similar values of shoot density (ca. 510 – 550 shoots m-2, respectively) but displaying lower values than those of sites located closer to the Strait of Gibraltar. Regarding patch sizes and leaf height, the longest leaves (ca. 25 cm) were found in medium and large patches, but the number of leaves per shoot were higher in the small and the medium size patches (ca. 6.3 leaves per shoot). Flowering was only detected at the Calahonda meadows with maximum values of ca. 330 inflorescences m-2 (115.2 ± 98.2 inflorescences m-2, n= 9; mean ± SD) (Fig.1). Inflorescence density was not significant different among patches of different sizes. In the Alboran Sea and unlike the studied meadows, extensive beds of P. oceanica occur at the National Park of Cabo de Gata (northeastern Alboran Sea), but from east to west (Strait of Gibraltar), meadows are gradually fragmenting and their depth range decrease from 30m to 2m depth between Cabo de Gata and Chullera, respectively. Probably, the Atlantic influence and the characteristic oceanographic conditions of the Alboran Sea (i.e., higher turbidity, higher water turbulence) represent a developmental limiting factor for P. oceanica at higher depths. Similarities between the meadows located closer to Strait of Gibraltar (Chullera and Estepona) were detected as well as between those more distant (Calahonda and Maro). The first ones showed higher values of shoot densities and leaf heights than the formers, which could be relating to the higher hydrodynamic exposure found at Chullera and Estepona meadows. Regarding flowering events, sexual reproduction in P. oceanica is not common in different locations of the Mediterranean Sea. The available information seems to indicate that flowering represent an irregular event and it is related to high seawater temperature. In fact, the flowering episodes that occurred in Calahonda in November 2015, match with the warmest year ever recorded. This is the third flowering event registered in these meadows located close to the westernmost distributional limit of P. oceanica (Málaga, Alboran Sea), which could indicates that these meadows presents a healthy status. Furthermore, the absence of significant differences in relation to inflorescence density between patches of different sizes may be indicating that the fragmentation does not necessarily influence on the flowering of this seagrass species.
Resumo:
The Bioconcentration Factor (BCF) is the principal source of information used to assess and regulate the potential hazard and risk for a chemical that has the potential to bioaccumulate in the marine environment, according to the Marine Strategy Framework Directive (MSFD). The main objective of this thesis was to estimate the BCFs of two different emerging contaminants in Ruditapes philippinarum (Manila clam) under controlled laboratory conditions: the UV filter 4-methylbenzylidene camphor (4-MBC) commonly used in skincare products, and the artificial sweetener Acesulfame potassium (ACE-K) used as a food additive. Ruditapes philippinarum organisms were exposed directly to 4-MBC and ACE-K nominal concentration of 1, 10 and 100 μg L-1 during 10 days. Bioconcentration factors (BCFs) were estimated according to 3 different models for both compounds. The 4-MBC estimated BCFs fall in range of 61553 - 539143 L Kg-1, showing that this compound is very bioaccumulative and could also undergo biomagnification in the marine food chain. On the contrary, estimated ACE-K BCF is consistently lower, in order of 7 L Kg-1 for the nominal exposure concentration of 100 μg L-1. The low ACE-K BCF could be explained by its high solubility in water and thus a rapid metabolization by clams during the experiments. In summary, future research focusing on the marine environment is needed on these two emerging compounds.