932 resultados para Washington (State). Legislature
Resumo:
At head of title: United States Department of Commerce draft environmental impact statement.
Resumo:
Includes: Biennial report of Factory, Mill and Railroad Inspection, and: Biennial report of the State Inspector of Coal Mines.
Resumo:
Mode of access: Internet.
Resumo:
Issue for Sept. 30, 1932 has title: Tenth biennial report of the Department of Agriculture and fifth biennial report of the Department of Conservation and Development to the Governor.
Resumo:
Title varies slightly.
Resumo:
Vols. for 1961-<1997-1998> issued in parts.
Resumo:
Mode of access: Internet.
Resumo:
"A few professional books and magazines recommended for Washington educators": p. 23.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
US state-based data breach notification laws have unveiled serious corporate and government failures regarding the security of personal information. These laws require organisations to notify persons who may be affected by an unauthorized acquisition of their personal information. Safe harbours to notification exist if personal information is encrypted. Three types of safe harbour have been identified in the literature: exemptions, rebuttable presumptions and factors. The underlying assumption of exemptions is that encrypted personal information is secure and therefore unauthorized access does not pose a risk. However, the viability of this assumption is questionable when examined against data breaches involving encrypted information and the demanding practical requirements of effective encryption management. Recent recommendations by the Australian Law Reform Commission (ALRC) would amend the Privacy Act 1988 (Cth) to implement a data breach scheme that includes a different type of safe harbour, factor based analysis. The authors examine the potential capability of the ALRC’s proposed encryption safe harbour in relation to the US experience at the state legislature level.
Resumo:
The trucking industry has played a significant role in the economic growth in Texas by transporting and distributing commodities using commercial motor vehicles. The Texas Department of Transportation (TxDOT), however, has recognized that the large number of overweight trucks operating on the state highway system has resulted in the deterioration of pavement condition. In addition, the permit fee to carry higher loads above legal limits is much lower than the cost to treat the increase in pavement damage. The primary purpose of the research presented in this paper is to investigate current TxDOT overweight permit structures to support pavement management. The research team analyzed the TxDOT “1547” Over-axle Weight Tolerance Permit structure to support an increase in the fee structure, bringing it more in line with the actual pavement damage. The analysis showed that the revised overweight permit structure could provide an additional $9.3 million annually for pavement maintenance needs by increasing current permit fees. These results were supported by the 2030 Committee for recommendation to the Texas Transportation Commission and consideration by the State Legislature [1]. The research team recommends conducting further research to identify methods for working cooperatively with the trucking industry to develop improved methods for assessing weight damage relationships and developing more effective and accurate means for assessing overweight permit fees.
Resumo:
Vancouver Lake, located adjacent to the Columbia River and just north of the Vancouver-Portland metropolitan area, is a "dying" lake. Although all lakes die naturally in geologic time through the process of eutrophication,* Vancouver Lake is dying more rapidly due to man's activities and due to the resultant increased accumulation of sediment, chemicals, and wastes. Natural eutrophication takes thousands of years, whereas man-made modifications can cause the death of a lake in decades. Vancouver Lake does, however, have the potential of becoming a valuable water resource asset for the area, due particularly to its location near the Columbia River which can be used as a source of "flushing" water to improve the quality of Vancouver Lake. (Document pdf contains 59 pages) Community interest in Vancouver Lake has waxed and waned. Prior to World War II, there were relatively few plans for discussions about the Lake and its surrounding land area. A plan to drain the Lake for farming was prohibited by the city council and county commissioners. Interest increased in 1945 when the federal government considered developing the Lake as a berthing harbor for deactivated ships at which time a preliminary proposal was prepared by the City. The only surface water connection between Vancouver Lake and the Columbia River, except during floods, is Lake River. The Lake now serves as a receiving body of water for Lake River tidal flow and surface flow from creeks and nearby land areas. Seasonally, these flows are heavily laden with sediment, septic tank drainage, fertilizers and drainage from cattle yards. Construction and gravel pit operations increase the sediment loads entering the Lake from Burnt Bridge Creek and Salmon Creek (via Lake River by tidal action). The tidal flats at the north end of Vancouver Lake are evidence of this accumulation. Since 1945, the buildup of sediment and nutrients created by man's activities has accelerated the growth of the large water plants and algae which contribute to the degeneration of the Lake. Flooding from the Columbia River, as in 1968, has added to the deposition in Vancouver Lake. The combined effect of these human and natural activities has changed Vancouver Lake into a relatively useless body of shallow water supporting some wildlife, rough fish, and shallow draft boats. It is still pleasant to view from the hills to the east. Because precipitation and streamflow are the lowest during the summer and early fall, water quantity and quality conditions are at their worst when the potential of the Lake for water-based recreation is the highest. Increased pollution of the Lake has caused a larger segment of the community to become concerned. Land use and planning studies were undertaken on the Columbia River lowlands and a wide variety of ideas were proposed for improving the quality of the water-land environment in order to enhance the usefulness of the area. In 1966, the College of Engineering Research Division at Washington State University (WSU0 in Pullman, Washington, was contacted by the Port of Vancouver to determine possible alternatives for restoring Vancouver Lake. Various proposals were prepared between 1966 and 1969. During the summer and fall of 1967, a study was made by WSU on the existing water quality in the Lake. In 1969, the current studies were funded to establish a data base for considering a broad range of alternative solutions for improving the quantity and quality of Vancouver Lake. Until these studies were undertaken, practically no data on a continuous nature were available on Vancouver Lake, Lake River, or their tributaries. (Document pdf contains 59 pages)
Resumo:
Commercial harvest of red sea urchins began in Washington state in 1971. Harvests peaked in the late 1980s and have since declined substantially in Washington and other areas of the U.S. west coast. We studied effects of experimental harvest on red sea urchins in San Juan Channel (SJC), a marine reserve in northern Washing-ton. We recorded changes in density and size distribution of sea urchin populations resulting from three levels of experimental harvest: 1) annual size-selective harvest (simulating cur-rent commercial urchin harvest regulations), 2) monthly complete (non–size selective) harvest, and 3) no harvest (control) sites. We also examined re-colonization rates of harvested sites. The red sea urchin population in SJC is composed of an accumulation of large, old individuals. Juvenile urchins represent less than 1% of the population. Lower and upper size limits for commercial harvest protect 5% and 45% of the population, respectively. Complete harvest reduced sea urchin densities by 95%. Annual size-selective harvest significantly decreased sea urchin densities by 67% in the first year and by 47% in the second year. Two years of size-selective harvest significantly altered the size distribution of urchins, decreasing the density of legal-size urchins. Recolonization of harvested sites varied seasonally and occurred primarily through immigration of adults. Selective harvest sites were recolonized to 51% and 38% of original densities, respectively, six months after the first and second annual harvests. Yields declined substantially in the second year of size-selective harvest because of the fishing down of the population and because of low recolonization rates of harvested sites. We recommend that managers consider the potential efficacy of marine harvest refuges and reevaluate the existing upper and lower size limits for commercial harvest to improve long-term management of the sea urchin fishery in Washington.
Resumo:
We introduce a quality controlled observational atmospheric, snow, and soil data set from Snoqualmie Pass, Washington, U.S.A., to enable testing of hydrometeorological and snow process representations within a rain-snow transitional climate where existing observations are sparse and limited. Continuous meteorological forcing (including air temperature, total precipitation, wind speed, specific humidity, air pressure, short- and longwave irradiance) are provided at hourly intervals for a 24-year historical period (water years 1989-2012) and at half-hourly intervals for a more-recent period (water years 2013-2015), separated based on the availability of observations. Additional observations include 40-years of snow board new snow accumulation, multiple measurements of total snow depth, and manual snow pits, while more recent years include sub-daily surface temperature, snowpack drainage, soil moisture and temperature profiles, and eddy co-variance derived turbulent heat flux. This data set is ideal for testing hypotheses about energy balance, soil and snow processes in the rain-snow transition zone. Plots of live data can be found here: http://depts.washington.edu/mtnhydr/cgi/plot.cgi