87 resultados para WWTP
Resumo:
This paper evaluate the performance of a Wastewater Treatment Plant (WWTP) in sequential batch activated sludge modality with tertiary treatment step, located in high temperature region. It also presents the analysis of organic matter’s removal and the evaluation of sludge sedimentation conditions through reactors in bench scale, fed with different substrate’s and biomass’ concentrations, from the WWTP in study. The results showed high efficiency and stability of the treatment process using Sequential Batch Reactors for domestic sewage, even with sudden changes of organic and hydraulic load, reaching more than 90% of efficiency in the removal of biodegradable organic matter. The removal of organic matter and sedimentation tests in bench reactors showed the good performance in respect of the organic matter’s removal, however, the high concentration of micro-organism results in a lower sludge sedimentation rate, which can compromise the quality of the final effluent. The relation Food/Microorganism in the conditions of the WWTP’s current operation showed a value of 0.06 gCOD/gVSS.d. and zonal sedimentation velocity of 0.59 m/h, the great ratio of the concentration of the substrate by biomass concentration, which obtained the maximum operational efficiency, showed a value of 0.09 gCOD/gVSS.d. and zonal sedimentation velocity of 1.4 m/h.
Resumo:
The mathematical modeling in the simulation of self-purification capacity in lotic environment is an important tool in the planning and management of hydric resources in hydrographic basin scale. It satisfactorily deals with the self-purification process when the coefficients of physical and biochemical processes are calibrated from monitorated water quality data, which was the main focus of this study. The present study was conducted to simulate the behavior of the parameters OD, BOD5, total phosphorus, E. coli, ammonia, nitrite, nitrate and the total metals cadmium, chromium, copper, lead and zinc in the Uberabinha’s lower course (with an approximate annual growth flow between 4-35 m3/s), in a stretch of 19 km downstream of the treated effluent release by the WWTP of the city. The modelings, on the present study, show the importance of constant water quality parameters monitoration over the water course, based on the comparison of the simulations from calibrated coefficients and coefficients obtained in the literature for the period of June until November 2015. After coefficients calibration, there were good adjustments between simulated and measured data for the parameters OD, BOD, Ptotal, ammonia and nitrate and unsatisfactory adjust for the parameters nitrite and E. coli. About the total metals, the adjustments were not satisfactory on the reservoir’s vicinity of the Small Hydropower Plant Martins, due the considerable increase of the bottom sediment in lentic region. The greatest scientific contribution of this study was to calibrate the decay coefficient K and the quantification of the release by the fund S of total metals in watercourse midsize WWTP pollutant load receptor, justified by the lack of studies in the literature about the subject. For the metals cadmium, chromium, copper, lead and zinc, the borderline for K and S calibrated were: 0.0 to 13.0 day-1 and 0.0 to 1.7 g/m3.day; 0.0 to 0.9 day-1 and 0.0 to 7.3 g/m3.day; 0.0 to 25.0 day-1 and 0.0 to 1.8 g/m3.day; 0.0 to 7.0 day-1 and 0.0 to 40.3 g/m3.day; 0.0 to 30.0 day-1 and 0.0 to 70.1 g/m3.day.
Resumo:
Volos city and its port are situated in the northern part of Pagassitikos Gulf, a shallow, semi-enclosed marine area in central Greece. A wastewater treatment plant (WWTP) and pipeline operate in the same area. Muddy sediments with low carbonate contents cover most of the seabed, except for the Volos embayment and the western part of the gulf where sandy carbonates prevail. Bulk organic carbon contents and the organic carbon contents of the clay fractions are high in the vicinity of Volos embayment. High element (Pb, Cu, and Zn) contents and Igeo (geoaccumulation index) values were found for the clay fractions in the northern part of Pagassitikos Gulf. This enrichment is attributed to the discharge of raw domestic and industrial effluents of Volos city and port before the WWTP was installed. The dispersal of pollutants is essentially controlled by diffusion from point sources (city, port and WWTP) and is limited to Volos Bay. Relatively high Mn levels are ascribed to diagenetic formation of manganese carbonates (authigenic phase), whereas Cr and Ni are elevated due to weathering of ultrabasic formations on land.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Com a realização deste trabalho, pretendeu-se efetuar uma seleção de culturas mistas em reatores semi-descontínuos (SBR) com capacidade de acumulação de polihidroxialcanoatos (PHA). Para a seleção de culturas foram utilizados inóculos provenientes de diferentes Estações de Tratamento de Águas Residuais (ETAR) e ácidos orgânicos voláteis (AOV) como fonte de carbono. Foram testadas diferentes condições como a proveniência do inóculo, as cargas orgânicas aplicadas e a seleção de culturas utilizando soro de queijo. Verificaram-se elevadas remoções da CQO (acima de 90%) em grande parte dos ensaios realizados, apresentando uma acumulação de PHA por parte de algumas espécies de bactérias presentes. Ocorreu o aparecimento de microrganismos filamentosos com capacidade de acumulação de PHA em alguns ensaios, levando a serem testadas como culturas acumuladoras de PHA. A estabilidade das culturas mistas não foi atingida, mesmo havendo ensaios com 80 dias de operação. Efetuaram-se ensaios de acumulação de PHA em reatores descontínuos, utilizando as culturas selecionadas anteriormente em reatores SBR, com AOV provenientes da acidificação anaeróbia de diferentes resíduos (Fração Orgânica dos Resíduos Sólidos Urbanos - FORSU e Soro de Queijo). Verificou-se uma melhor acumulação por parte das culturas selecionadas com soro de queijo, na qual a quantidade de polímero acumulado triplicou.
Resumo:
Conservation of the seven lagoons of the Palavas complex (southern France) has been severely impaired by nutrient over-enrichment during at least four decades. The effluents of the Montpellier wastewater treatment plant (WWTP) represented the main nutrient input. To improve the water quality of these lagoons, this WWTP was renovated and upgraded and, since the end of 2005, its effluents have been discharged 11 km offshore into the Mediterranean (total investment €150 M). Possibilities of ecosystem restoration as part of a conservation programme were explored by a focus group of experts. Their tasks were: (i) to evaluate the impact of the reduction of the nutrient input; (ii) if necessary, to design additional measures for an active restoration programme; and (iii) to predict ecosystem trajectories for the different cases. Extension of Magnoliophyta meadows can be taken as a proxy for ecosystem restoration as they favour the increase of several fish (seahorse) and bird (ducks, swans, herons) species, albeit they represent a trade-off for greater flamingos. Additional measures for active ecosystem restoration were only recommended for the most impaired lagoon Méjean, while the least impaired lagoon Ingril is already on a trajectory of spontaneous recovery. A multiple contingent valuation considering four different management options for the Méjean lagoon was used in a pilot study based on face-to-face interviews with 159 respondents. Three levels of ecosystem restoration were expressed in terms of recovery of Magnoliophyta meadows, including their impact on emblematic fish and avifauna. These were combined with different options for access (status quo, increasing access, increasing access with measures to reduce disturbance). The results show a willingness of local populations to pay per year about €25 for the highest level of ecological restoration, while they were only willing to allocate about €5 for additional footpaths and hides.
Resumo:
A modelação matemática de Estações de Tratamento de Águas Residuais (ETAR) tem sido uma ferramenta de enorme utilidade nas fases de projeto e de exploração destas estruturas de tratamento. O presente estudo teve por objetivo principal construir um modelo matemático da ETAR de Bragança, em particular do seu tratamento biológico de lamas ativadas, com vista a avaliar, compreender e otimizar o seu desempenho. A construção do modelo foi efetuada com recurso ao ambiente de simulação WRc STOAT 5.0. O processo de lamas ativadas foi descrito pelo modelo de referência ASAL3. O modelo construído foi calibrado e validado com base em dados experimentais de 2015, obtidos no âmbito do programa de controlo analítico da ETAR. O modelo foi ainda utilizado para avaliar a qualidade do efluente em resposta a alterações do caudal e composição do afluente, a alterações de condições operacionais e a outras alternativas de tratamento. O modelo mostrou-se bastante adequado na descrição da evolução mensal da qualidade do efluente final da ETAR relativamente aos parâmetros Sólidos Suspensos Totais (SST) e Carência Bioquímica de Oxigénio (CBO5), embora apresente uma tendência para os subestimar em 1,5 e 3,5 mg/L, respetivamente. Em relação ao azoto total, os valores simulados aproximaram-se dos valores reais, quando se aumentaram as taxas de recirculação interna para 400%, um fator de cerca de 4 vezes superior. Os resultados do modelo e dos cenários mostram e reforçam o bom desempenho e a operação otimizada da ETAR em relação a remoção de SST e CBO5. Em relação ao azoto total, a ETAR não assegura de forma sistemática uma eficiência elevada, mas apresenta um bom desempenho, face ao que o modelo consegue explicar para as mesmas condições operacionais. Através do estudo de cenários procurou-se encontrar alternativas de tratamento eficientes e viáveis de remoção de azoto total, mas não se identificaram soluções que assegurassem decargas de azoto abaixo dos limites legais. Os melhores resultados que se alcançaram para a remoção deste contaminante estão associados ao aumento das taxas de recirculação interna do sistema pré-anóxico existente e a uma configuração do tipo Bardenpho de quatro estágios com alimentação distribuída, em proporções iguais, pelos dois estágios anóxicos. Outras soluções que envolvam tecnologias distintas podem e devem ser equacionadas em projetos futuros que visem a melhoria de eficiência de remoção de azoto da ETAR.
Resumo:
The WTP produce many kinds of residue on your treatment stages, but the sludge is the more problematic from the final disposition point view. The actual rate of residue production deriving from technological evolution and the crescent population needs prevents the subtle equilibrium generation between consumption and recycling/reuse, creating problems of pollution resulting from inappropriate management of residues. Thus, is necessary achieve a new equilibrium between the grow from raw materials and energy and the residue generation. This equilibrium should be achieved by technical and economic feasibility of environmental supported models through recycling and reuse. The red ceramic industry stand out in residue absorption question as raw material due their clay mass heterogeneity, constituted by clay minerals and non-clay minerals with wide mineralogical variation, allowing residue inclusion which act like plastic or non-plastic materials, contributing to retain heavy metals contained in residues in the vitreous mass formed during the burning of the ceramic bodies. This work propose the study of the influence of incorporation of 25 wt.% sludge from wastewater treatment plant, according preliminary results, in the mass to produce ceramic bodies. The raw materials was characterized through chemical composition analyses by XRF, mineralogical analyses by XRD, thermal analyses by TG and DTA, Atterberg limits and thermodilatometry. Subsequently was composed the mass with 75 wt.% of clay and 25 wt.% of dried wastewater sludge from UFRN WWTP. Samples with 6,0 x 2,0 x 0,5 cm was produced with unidirectional compacting under pressure of 20MPa and burned in temperatures between 950 and 1,200ºC. After fired, the ceramic bodies have been submitted to physical and mechanical analyses through the measure of firing shrinkage, water absorption, density, apparent porosity and flexural strength; crystallographic analyses through XRD and microstructure analyses by SEM. The technological properties obtained was satisfactory to production of roof tiles with 25 wt.% at 1,200 ºC, but the production of others products at lower temperatures was not feasible
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Agronomia e Medicina Veterinária, Programa de Pós-Graduação em Agronomia, 2016.
Resumo:
The service of a critical infrastructure, such as a municipal wastewater treatment plant (MWWTP), is taken for granted until a flood or another low frequency, high consequence crisis brings its fragility to attention. The unique aspects of the MWWTP call for a method to quantify the flood stage-duration-frequency relationship. By developing a bivariate joint distribution model of flood stage and duration, this study adds a second dimension, time, into flood risk studies. A new parameter, inter-event time, is developed to further illustrate the effect of event separation on the frequency assessment. The method is tested on riverine, estuary and tidal sites in the Mid-Atlantic region. Equipment damage functions are characterized by linear and step damage models. The Expected Annual Damage (EAD) of the underground equipment is further estimated by the parametric joint distribution model, which is a function of both flood stage and duration, demonstrating the application of the bivariate model in risk assessment. Flood likelihood may alter due to climate change. A sensitivity analysis method is developed to assess future flood risk by estimating flood frequency under conditions of higher sea level and stream flow response to increased precipitation intensity. Scenarios based on steady and unsteady flow analysis are generated for current climate, future climate within this century, and future climate beyond this century, consistent with the WWTP planning horizons. The spatial extent of flood risk is visualized by inundation mapping and GIS-Assisted Risk Register (GARR). This research will help the stakeholders of the critical infrastructure be aware of the flood risk, vulnerability, and the inherent uncertainty.
Resumo:
El presente trabajo de titulación tiene como finalidad la evaluación, el diagnóstico y la elaboración de un plan de mejoras que permita optimizar los procesos de depuración de las plantas de tratamiento de aguas residuales de los sectores Pambadel y Zhuringualo del Cantón Girón. En el diagnóstico de las PTAR se realizó la caracterización de los afluentes y efluentes; los valores obtenidos se compararon con la normativa ambiental TULSMA, a fin de evaluar el cumplimiento. Los resultados de laboratorio de los años 2014, 2015 y 2016junto con la valoración in situpermitieron determinar los porcentajes de eficiencia de las depuradoras. Laseficiencias alcanzadas en el 2014 fueron de 70,98% para Pambadel, 69,14% en Zhuringualo, en el año 2015 de -266,94% paraplanta de Pambadel, 66,03% para Zhuringualo, en el 2016 de 40,45% y 71,23% respectivamente. Al momento de comparar con la normativa encontramos incumplimiento en parámetros como: fósforo, coliformes totales y termotolerantes. También se efectuó un análisis social en el cual se encuestó a los pobladores de las zonas de influencia directa de las PTAR con la finalidad de conocer las necesidades y molestias que estas generan. Concluyendo que es necesaria la implementación del plan de mejoras que implica los siguientes procesos de optimización: un programa de mantenimiento emergente y remodelación de infraestructura deteriorada, la implementación de un laboratorio básico, la construcción de un sistema de pretratamiento basándose en los planos de diseño y la realización de estudios técnicos posteriores.
Resumo:
Biochemical processes by chemoautotrophs such as nitrifiers and sulfide and iron oxidizers are used extensively in wastewater treatment. The research described in this dissertation involved the study of two selected biological processes utilized in wastewater treatment mediated by chemoautotrophic bacteria: nitrification (biological removal of ammonia and nitrogen) and hydrogen sulfide (H2S) removal from odorous air using biofiltration. A municipal wastewater treatment plant (WWTP) receiving industrial dyeing discharge containing the azo dye, acid black 1 (AB1) failed to meet discharge limits, especially during the winter. Dyeing discharge mixed with domestic sewage was fed to sequencing batch reactors at 22oC and 7oC. Complete nitrification failure occurred at 7oC with more rapid nitrification failure as the dye concentration increased; slight nitrification inhibition occurred at 22oC. Dye-bearing wastewater reduced chemical oxygen demand (COD) removal at 7oC and 22oC, increased i effluent total suspended solids (TSS) at 7oC, and reduced activated sludge quality at 7oC. Decreasing AB1 loading resulted in partial nitrification recovery. Eliminating the dye-bearing discharge to the full-scale WWTP led to improved performance bringing the WWTP into regulatory compliance. BiofilterTM, a dynamic model describing the biofiltration processes for hydrogen sulfide removal from odorous air emissions, was calibrated and validated using pilot- and full-scale biofilter data. In addition, the model predicted the trend of the measured data under field conditions of changing input concentration and low effluent concentrations. The model demonstrated that increasing gas residence time and temperature and decreasing influent concentration decreases effluent concentration. Model simulations also showed that longer residence times are required to treat loading spikes. BiofilterTM was also used in the preliminary design of a full-scale biofilter for the removal of H2S from odorous air. Model simulations illustrated that plots of effluent concentration as a function of residence time or bed area were useful to characterize and design biofilters. Also, decreasing temperature significantly increased the effluent concentration. Model simulations showed that at a given temperature, a biofilter cannot reduce H2S emissions below a minimum value, no matter how large the biofilter.