932 resultados para WHITE PORTLAND-CEMENT
Análise físico-química do MTA e do cimento Portland associado a quatro diferentes radiopacificadores
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Cement production is estimated to be responsible for approximately 6 per cent of total global greenhouse gas emissions. One of the most promising alternatives to common Portland cement is geopolymer cement, and Australian company Zeobond is a bone fide leader in its manufacture.
Resumo:
We report the phase transformations in Portland cement before and after hydration. The hydration mechanism was studied in detail by using a full Rietveld refinement of the X-ray diffraction (XRD) patterns, Fourier Transformed Infra-Red (FTIR) spectroscopy, Thermogravimetric Analysis (TGA) and Mossbauer spectroscopy at room temperature. From the Rietveld refinement of XRD data, alite, belite, celite, brown-millerite and low quartz phases were detected and quantified as major phases in dry cement powder. After hydration, calcium carbonate, portlandite and ettringite phases were found to form. A large reduction in the amounts of alite and belite phases were observed suggesting the formation of amorphous C-S-H phase and emphasizing the role of alite phase in flash setting of cement, as justified by the XRD and FTIR spectroscopy. Mossbauer spectra of all the unset samples showed quadrupole split doublets corresponding to the brownmillerite phase which remains unchanged even after about one week of hydration, suggesting that brownmillerite did not transform to other phases during initial stage of hydration process. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Portland cement has been widely used for stabilisation/solidification (S/S) treatment of contaminated soils. However, there is a dearth of literature on pH-dependent leaching of contaminants from cement-treated soils. This study investigates the leachability of Cu, Pb, Ni, Zn and total petroleum hydrocarbons (TPH) from a mixed contaminated soil. A sandy soil was spiked with 3000 mg/kg each of Cd, Cu, Pb, Ni and Zn, and 10,000 mg/kg of diesel, and treated with ordinary Portland cement (CEM I). Four different binder dosages, 5%, 10%, 15% and 20% (m/m) and different water contents ranging from 13%-19% dry weight were used in order to find a safe operating envelope for the treatment process. The pH-dependent leaching behaviour of the treated soil was monitored over an 84-day period using a 3-point acid neutralisation capacity (ANC) test. The monolithic leaching test was also conducted. Geotechnical properties such as unconfined compressive strength (UCS), hydraulic conductivity and porosity were assessed over time. The treated soils recorded lower leachate concentrations of Ni and Zn compared to the untreated soil at the same pH depending on binder dosage. The binder had problems with Pb stabilisation and TPH leachability was independent of pH and binder dosage. The hydraulic conductivity of the mixes was generally of the order, 10-8 m/sec, while the porosity ranged from 26%-44%. The results of selected performance properties are compared with regulatory limits and the range of operating variables that lead to acceptable performance described. © 2012 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences.
Resumo:
This study was aimed at evaluating the mechanical and pH-dependent leaching performance of a mixed contaminated soil treated with a mixture of Portland cement (CEMI) and pulverised fuel ash (PFA). It also sought to develop operating envelopes, which define the range(s) of operating variables that result in acceptable performance. A real site soil with low contaminant concentrations, spiked with 3000mg/kg each of Cd, Cu, Pb, Ni and Zn, and 10,000mg/kg of diesel, was treated with one part CEMI and four parts PFA (CEMI:PFA=1:4) using different binder and water contents. The performance was assessed over time using unconfined compressive strength (UCS), hydraulic conductivity, acid neutralisation capacity (ANC) and pH-dependent leachability of contaminants. With binder dosages ranging from 5% to 20% and water contents ranging from 14% to 21% dry weight, the 28-day UCS was up to 500kPa and hydraulic conductivity was around 10-8m/s. With leachant pH extremes of 7.2 and 0.85, leachability of the contaminants was in the range: 0.02-3500mg/kg for Cd, 0.35-1550mg/kg for Cu, 0.03-92mg/kg for Pb, 0.01-3300mg/kg for Ni, 0.02-4010mg/kg for Zn, and 7-4884mg/kg for total petroleum hydrocarbons (TPHs), over time. Design charts were produced from the results of the study, which show the water and/or binder proportions that could be used to achieve relevant performance criteria. The charts would be useful for the scale-up and design of stabilisation/solidification (S/S) treatment of similar soil types impacted with the same types of contaminants. © 2013 Elsevier Ltd.
Resumo:
The efficient remediation of heavy metal-bearing sediment has been one of top priorities of ecosystem protection. Cement-based solidification/stabilization (s/s) is an option for reducing the mobility of heavy metals in the sediment and the subsequent hazard for human beings and animals. This work uses sodium carbonate as an internal carbon source of accelerated carbonation and gaseous CO2 as an external carbon source to overcome deleterious effects of heavy metals on strength development and improve the effectiveness of s/s of heavy metal-bearing sediment. In addition to the compressive strength and porosity measurements, leaching tests followed the Chinese solid waste extraction procedure for leaching toxicity - sulfuric acid and nitric acid method (HJ/T299-2007), German leaching procedure (DIN38414-S4) and US toxicity characteristic leaching procedures (TCLP) have been conducted. The experimental results indicated that the solidified sediment by accelerated carbonation was capable of reaching all performance criteria for the disposal at a Portland cement dosage of 10 wt.% and a solid/water ratio of 1: 1. The concentrations of mercury and other heavy metals in the leachates were below 0.10 mg/L and 5 mg/L, respectively, complying with Chinese regulatory level (GB5085-2007). Compared to the hydration, accelerated carbonation improved the compressive strength of the solidified sediment by more than 100% and reduced leaching concentrations of heavy metals significantly. It is considered that accelerated carbonation technology with a combination of Na2CO3 and CO2 may practically apply to cement-based s/s of heavy metal-bearing sediment. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Heavy metal-bearing waste usually needs solidification/stabilization (s/s) prior to landfill to lower the leaching rate. Cement is the most adaptable binder currently available for the immobilisation of heavy metals. The selection of cements and operating parameters depends upon an understanding of chemistry of the system. This paper discusses interactions of heavy metals and cement phases in the solidification/stabilisation process. It provides a clarification of heavy metal effects on cement hydration. According to the decomposition rate of minerals, heavy metals accelerate the hydration of tricalcium silicate (C3S) and Portland cement, although they retard the precipitation of portlandite due to the reduction of pH resulted from hydrolyses of heavy metal ions. The chemical mechanism relevant to the accelerating effect of heavy metals is considered to be H+ attacks on cement phases and the precipitation of calcium heavy metal double hydroxides, which consumes calcium ions and then promotes the decomposition Of C3S. In this work, molecular models of calcium silicate hydrate gel are presented based on the examination of Si-29 solid-state magic angle spinning/nuclear magnetic resonance (MAS/NMR). This paper also reviews immobilisation mechanisms of heavy metals in hydrated cement matrices, focusing on the sorption, precipitation and chemical incorporation of cement hydration products. It is concluded that further research oil the phase development during cement hydration in the presence of heavy metals and thermodynamic modelling is needed to improve effectiveness of cement-based s/s and extend this waste management technique. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Portland cement (PC) and blended cements containing pulverized fuel ash (PFA) or granulated blast-furnace slag (GGBS) were used to solidify/stabilize an electroplating sludge in this work. The acid neutralization capacity (ANC) of the hydrated pastes increased in the order of PC > PC/GGBS > PC/PFA. The GGBS or PFA replacement (80 wt%) reduced the ANC of the hydrated pastes by 30–50%. The ANC of the blended cement-solidified electroplating sludge (cement/sludge 1:2) was 20–30% higher than that of the hydrated blended cement pastes. Upon carbonation, there was little difference in the ANC of the three cement pastes, but the presence of electroplating sludge (cement/sludge 1:2) increased the ANC by 20%. Blended cements were more effective binders for immobilization of Ni, Cr and Cu, compared with PC, whereas Zn was encapsulated more effectively in the latter. Accelerated carbonation improved the immobilization of Cr, Cu and Zn, but not Ni. The geochemical code PHREEQC, with the edited database from EQ3/6 and HATCHES, was used to calculate the saturation index and solubility of likely heavy metal precipitates in cement-based solidification/stabilization systems. The release of heavy metals could be related to the disruption of cement matrices and the remarkable variation of solubility of heavy metal precipitates at different pH values.
Resumo:
The removal of water from three Portland cement grouts by pressure filtration is examined, and the consolidation behaviour of the filtered material clarified. The filtration takes place by the laying down of a very stiff filter cake through the removal of excess water. The behaviour due to further loading resembles that of a re-constituted silt. For stress levels above the filtration pressure the calculated permeability values are similar to those from the filtration phase only if the data sampling rate was sufficiently rapid to discriminate the first portion of the observed primary consolidation curve. The change in void ratio for incremental loading is roughly linear with the change in the logarithm of the vertical effective stress. The characterisation of fresh cement paste using standard soil mechanics models is both appropriate and useful, at least during the first few hours after mixing.
Resumo:
This paper presents the results of an experimental investigation carried out to evaluate the influence of Bauxsol, an artificially neutralised bauxite refinery residue (NBRR), on various properties of cement pastes. It was found that the NBRR does not have any pozzolanic properties and hence cannot be used as a supplementary cementitious material in concrete. In order to evaluate the effect of adding the product to Portland cement (PC) pastes, fresh properties (i.e. standard consistency and slump), setting time and heat of hydration were measured. In addition, its influence on chemical changes and compressive strength was investigated. It was found that the addition of this NBRR resulted in a decrease in compressive strength beyond 7 days. The setting time decreased with an increase in NBRR content in PC pastes. The rate of heat evolution for NBRR pastes was greater than that of the PC pastes, but a corresponding increase in the quantity of calcium hydroxide was not found. Therefore, it was concluded that unidentified hydration products when Bauxsol was used in PC pastes might have been the reason for the decrease in setting times.
Resumo:
The early-age strength development of concrete containing slag cement has been investigated to give guidance for its use in fast-track construction. Measurements of temperature rise under adiabatic conditions have shown that high levels of slag cement-for example, 70% of the total binder-are required to obtain a significant reduction in the peak temperature rise. Despite these temperature rises being lower than those for portland cement mixtures, however the early-age strength under adiabatic conditions of slag cement concrete can be as high as 250% of the strength of companion cubes cured at 20 degrees C (68 degrees F). The maturity and, hence, strength development were calculated from the adiabatic temperature histories based on several Maturity functions available in the literature. The predicted strength development with age was compared with the experimental results. Maturity functions that take into account the lower ultimate strengths obtained at elevated curing temperatures were found to be better at predicting the strength development.
Resumo:
The zeta potential generated at the interface between cement particle surfaces adsorbed with superplasticisers have been studied using electroacoustic technique, which is capable of measuring zeta potential at high concentrated suspensions. The study has been undertaken to examine the differences in the magnitude of the zeta potential for ordinary Portland cement (OPC) and Portland pozzolanic (fly ash) cement (PPC) pastes along with the differential impacts of different types of superplasticisers on both the varieties of cement pastes. In the latter context, the effects of three different types of superplasticisers namely Ligno Sulphonate (LS), Sulphonated Melamine Formaldehyde (SMF) and Sulphonated Naphthalene Formaldehyde (SNF) have been specifically studied. The results show that the cement pastes with PPC shows better dispersion when compared with the OPC. The paper also endeavors to unfold the relationship and significance of cement interaction with three different superplasticisers.
Resumo:
In recent years, pressures on global environment and energy security have led to an increasing demand on renewable energy sources, and diversification of Europe’s energy supply. Among these resources the biomass could exert an important role, since it is considered a renewable and CO2 neutral energy resource once the consumption rate is lower than the growth rate, and can potentially provide energy for heat, power and transports from the same installation. Currently, most of the biomass ash produced in industrial plants is either disposed of in landfill or recycled on agricultural fields or forest, and most times this goes on without any form of control. However, considering that the disposal cost of biomass ashes are raising, and that biomass ash volumes are increasing worldwide, a sustainable ash management has to be established. The main objective of the present study is the effect of biomass fly ashes in cement mortars and concretes in order to be used as a supplementary cementitious material. The wastes analyzed in the study were collected from the fluidized bed boilers and grate boilers available in the thermal power plants and paper pulp plants situated in Portugal. The physical as well as chemical characterisations of the biomass fly ashes were investigated. The cement was replaced by the biomass fly ashes in 10, 20 and 30% (weight %) in order to investigate the fresh properties as well as the hardened properties of biomass fly ash incorporated cement mortar and concrete formulations. Expansion reactions such as alkali silica reaction (ASR), sulphate attack (external and internal) were conducted in order to check the durability of the biomass fly ash incorporated cement mortars and concretes. Alternative applications such as incorporation in lime mortars and alkali activation of the biomass fly ashes were also attempted. The biomass fly ash particles were irregular in shape and fine in nature. The chemical characterization revealed that the biomass fly ashes were similar to a class C fly ash. The mortar results showed a good scope for biomass fly ashes as supplementary cementitious materials in lower dosages (<20%). The poor workability, concerns about the organic content, alkalis, chlorides and sulphates stand as the reasons for preventing the use of biomass fly ash in high content in the cement mortars. The results obtained from the durability tests have shown a clear reduction in expansion for the biomass fly ash mortars/concretes and the binder blend made with biomass fly ash (20%) and metakaolin (10%) inhibited the ASR reaction effectively. The biomass fly ash incorporation in lime mortars did not improve the mortar properties significantly though the carbonation was enhanced in the 15-20% incorporation. The biomass fly ash metakaolin blend worked well in the alkali activated complex binder application also. Portland cement free binders (with 30-40 MPa compressive strength) were obtained on the alkali activation of biomass fly ashes (60-80%) blended with metakaolin (20-40%).
Resumo:
Research in the field of polymer modified cement has been carried out for the last 70 years or more. Polymers are mostly used to enhance durability and sustainability of cement concrete and in combination with classical construction materials a synergistic effect is obtained. In this work different polymers were added to Portland cement in various proportions and the mechanical and chemical resistance properties of the resultant composites when exposed to chemical environments were studied. Microstructural studies were also carried out to investigate the morphology of the composite and analyse the nature of interactions taking place between the cement and polymer phases. Though most polymers did not improve the compressive strength of the cement paste, it was found that they enhanced the resistance of the virgin cement paste to external chemical environments. The polymers seal the pores in the cement matrix and bridge the microcracks within the composite. Some of the polymers underwent chemical interactions with the cement paste thereby interfering in the hydration of cement. Polymers also decreased the leachability of water soluble components of virgin cement resulting in composites having improved durability. An attempt to correlate the structure of the polymers with the properties of the resultant composites is also presented.
A study of the chemical and physical properties of cashew nut shell ash for use in cement materials.
Resumo:
A study of the chemical and physical properties of cashew nut shell ash for use in cement materials. Ash occupies a prominent place among agro-industrial wastes, as it is derived from energy generation processes. Several types of ash have pozzolanic reactivity, and might be used as replacement material for cement, resulting in less energy waste and lower cost. This work aimed to investigate the physical and chemical properties of the cashew nut shell ash (CNSA), by performing the following measurement tests: chemical analysis, bulk density, specific mass, leaching and solubilization process, X-ray diffraction (XrD), specific surface area (BET) and pozzolanicity analysis with cement and lime. The results indicate a low reactivity of CNSA and the presence of heavy metals, alkalis and phenol.