394 resultados para Vorticity
Resumo:
We study the dynamical properties of the homogeneous shear flow of inelastic dumbbells in two dimensions as a first step towards examining the effect of shape on the properties of flowing granular materials. The dumbbells are modelled as smooth fused disks characterized by the ratio of the distance between centres (L) and the disk diameter (D), with an aspect ratio (L/D) varying between 0 and 1 in our simulations. Area fractions studied are in the range 0.1-0.7, while coefficients of normal restitution (e(n)) from 0.99 to 0.7 are considered. The simulations use a modified form of the event-driven methodology for circular disks. The average orientation is characterized by an order parameter S, which varies between 0 (for a perfectly disordered fluid) and 1 (for a fluid with the axes of all dumbbells in the same direction). We investigate power-law fits of S as a function of (L D) and (1 - e(n)(2)) There is a gradual increase in ordering as the area fraction is increased, as the aspect ratio is increased or as the coefficient of restitution is decreased. The order parameter has a maximum value of about 0.5 for the highest area fraction and lowest coefficient of restitution considered here. The mean energy of the velocity fluctuations in the flow direction is higher than that in the gradient direction and the rotational energy, though the difference decreases as the area fraction increases, due to the efficient collisional transfer of energy between the three directions. The distributions of the translational and rotational velocities are Gaussian to a very good approximation. The pressure is found to be remarkably independent of the coefficient of restitution. The pressure and dissipation rate show relatively little variation when scaled by the collision frequency for all the area fractions studied here, indicating that the collision frequency determines the momentum transport and energy dissipation, even at the lowest area fractions studied here. The mean angular velocity of the particles is equal to half the vorticity at low area fractions, but the magnitude systematically decreases to less than half the vorticity as the area fraction is increased, even though the stress tensor is symmetric.
Resumo:
We carry out a direct numerical simulation (DNS) study that reveals the effects of polymers on statistically steady, forced, homogeneous, and isotropic fluid turbulence. We find clear manifestations of dissipation-reduction phenomena: on the addition of polymers to the turbulent fluid, we obtain a reduction in the energy dissipation rate; a significant modification of the fluid-energy spectrum, especially in the deep-dissipation range; and signatures of the suppression of small-scale structures, including a decrease in small-scale vorticity filaments. We also compare our results with recent experiments and earlier DNS studies of decaying fluid turbulence with polymer additives.
Resumo:
We present the results of our detailed pseudospectral direct numerical simulation (DNS) studies, with up to 1024(3) collocation points, of incompressible, magnetohydrodynamic (MHD) turbulence in three dimensions, without a mean magnetic field. Our study concentrates on the dependence of various statistical properties of both decaying and statistically steady MHD turbulence on the magnetic Prandtl number Pr-M over a large range, namely 0.01 <= Pr-M <= 10. We obtain data for a wide variety of statistical measures, such as probability distribution functions (PDFs) of the moduli of the vorticity and current density, the energy dissipation rates, and velocity and magnetic-field increments, energy and other spectra, velocity and magnetic-field structure functions, which we use to characterize intermittency, isosurfaces of quantities, such as the moduli of the vorticity and current density, and joint PDFs, such as those of fluid and magnetic dissipation rates. Our systematic study uncovers interesting results that have not been noted hitherto. In particular, we find a crossover from a larger intermittency in the magnetic field than in the velocity field, at large Pr-M, to a smaller intermittency in the magnetic field than in the velocity field, at low Pr-M. Furthermore, a comparison of our results for decaying MHD turbulence and its forced, statistically steady analogue suggests that we have strong universality in the sense that, for a fixed value of Pr-M, multiscaling exponent ratios agree, at least within our error bars, for both decaying and statistically steady homogeneous, isotropic MHD turbulence.
Resumo:
In this paper, the flow due to a rotating disk non-symmetrically placed with respect to the height of the enclosing stationary cylinder is analyzed numerically. The full Navier-Stokes equations expressed in terms of stream function and vorticity are solved by successive over-relaxation for different disk radii, its distance from the bottom casing and rotational Reynolds numbers. It is observed that the flow pattern is strongly influenced by the size and the position of the disk. When the disk is very close to the top casing and small in radius, there are two regions of different scales and the vortices in the region of small scale are trapped between the disk and the top casing. Further, the variation of the moment coefficient is determined for different positions and sizes of the rotating disk. The calculations shows that the frictional torque increases rapidly, when the disk approaches the top casing. This finding is of importance for the design of vertical rotating disk reactors applied in chemical vapor deposition.
Resumo:
Discrete vortex simulations of the mixing layer carried out in the past have usually involved large induced velocity fluctuations, and thus demanded rather long time-averaging to obtain satisfactory values of Reynolds stresses and third-order moments. This difficulty has been traced here, in part, to the use of discrete vortices to model what in actuality are continuous vortex sheets. We propose here a novel two-dimensional vortex sheet technique for computing mixing layer flow in the limit of infinite Reynolds number. The method divides the vortex sheet into constant-strength linear elements, whose motions are computed using the Biot-Savart law. The downstream far-field is modelled by a steady vorticity distribution derived by application of conical similarity from the solution obtained in a finite computational domain. The boundary condition on the splitter plate is satisfied rigorously using a doublet sheet. The computed large-scale roll-up of the vortex sheet is qualitatively similar to experimentally obtained shadow-graphs of the plane turbulent mixing layer. The mean streamwise velocity profile and the growth rate agree well with experimental data. The presently computed Reynolds stresses and third-order moments are comparable with experimental and previous vortex-dynamical results, without using any external parameter (such as the vortex core-size) of the kind often used in the latter. The computed autocorrelations are qualitatively similar to experimental results along the top and bottom edges of the mixing layer, and show a well-defined periodicity along the centreline. The accuracy of the present computation is independently established by demonstrating negligibly small changes in the five invariants (including the Hamiltonian) in vortex dynamics.
Resumo:
The slow flow of granular materials is often marked by the existence of narrow shear layers, adjacent to large regions that suffer little or no deformation. This behaviour, in the regime where shear stress is generated primarily by the frictional interactions between grains, has so far eluded theoretical description. In this paper, we present a rigid-plastic frictional Cosserat model that captures thin shear layers by incorporating a microscopic length scale. We treat the granular medium as a Cosserat continuum, which allows the existence of localised couple stresses and, therefore, the possibility of an asymmetric stress tensor. In addition, the local rotation is an independent field variable and is not necessarily equal to the vorticity. The angular momentum balance, which is implicitly satisfied for a classical continuum, must now be solved in conjunction with the linear momentum balances. We extend the critical state model, used in soil plasticity, for a Cosserat continuum and obtain predictions for flow in plane and cylindrical Couette devices. The velocity profile predicted by our model is in qualitative agreement with available experimental data. In addition, our model can predict scaling laws for the shear layer thickness as a function of the Couette gap, which must be verified in future experiments. Most significantly, our model can determine the velocity field in viscometric flows, which classical plasticity-based model cannot.
Resumo:
We obtain, by extensive direct numerical simulations, time-dependent and equal-time structure functions for the vorticity, in both quasi-Lagrangian and Eulerian frames, for the direct-cascade regime in two-dimensional fluid turbulence with air-drag-induced friction. We show that different ways of extracting time scales from these time-dependent structure functions lead to different dynamic-multiscaling exponents, which are related to equal-time multiscaling exponents by different classes of bridge relations; for a representative value of the friction we verify that, given our error bars, these bridge relations hold.
Resumo:
A variable resolution global spectral method is created on the sphere using High resolution Tropical Belt Transformation (HTBT). HTBT belongs to a class of map called reparametrisation maps. HTBT parametrisation of the sphere generates a clustering of points in the entire tropical belt; the density of the grid point distribution decreases smoothly in the domain outside the tropics. This variable resolution method creates finer resolution in the tropics and coarser resolution at the poles. The use of FFT procedure and Gaussian quadrature for the spectral computations retains the numerical efficiency available with the standard global spectral method. Accuracy of the method for meteorological computations are demonstrated by solving Helmholtz equation and non-divergent barotropic vorticity equation on the sphere. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Laminar forced convection heat transfer from two-dimensional sudden expansion flow of different nanofluids is studied numerically. The governing equations are solved using the unsteady stream function-vorticity method. The effect of volume fraction of the nanoparticles and type of nanoparticles on heat transfer is examined and found to have a significant impact. Local and average Nusselt numbers are reported in connection with various nanoparticle, volume fraction, and Reynolds number for expansion ratio 2. The Nusselt number reaches peak values near the reattachment point and reaches asymptotic value in the downstream. Bottom wall eddy and volume fraction shows a significant impact on the average Nusselt number.
Resumo:
Laminar two-dimensional sudden expansion flow of different nanofluids is studied numerically. The governing equations are solved using stream function-vorticity method. The effect of volume fraction of the nanoparticles and type of nanoparticles on flow behaviour is examined and found significant impact. The flow response to Reynolds number in the presence of nanoparticles is examined. The presence of nanoparticles decreases the flow bifurcation Reynolds number. The size and the reattachment length of the bottom wall recirculation increase with increasing volume fraction and particle density. The effect of volume fraction and density of nanoparticles on friction factor is reported. The bottom wall recirculation strongly respond to the variation in volume faction and type of particles. However, weak response is observed for top wall recirculation.
Resumo:
Analyses of the invariants of the velocity gradient ten- sor were performed on flow fields obtained by DNS of compressible plane mixing layers at convective Mach num- bers Mc=0:15 and 1.1. Joint pdfs of the 2nd and 3rd invariants were examined at turbulent/nonturbulent (T/NT) boundaries—defined as surfaces where the local vorticity first exceeds a threshold fraction of the maximum of the mean vorticity. By increasing the threshold from very small lev-els, the boundary points were moved closer into the turbulent region, and the effects on the pdfs of the invariants were ob-served. Generally, T/NT boundaries are in sheet-like regions at both Mach numbers. At the higher Mach number a distinct lobe appears in the joint pdf isolines which has not been ob-served/reported before. A connection to the delayed entrain-ment and reduced growth rate of the higher Mach number flow is proposed.
Resumo:
We experimentally study the effect of having hinged leaflets at the jet exit on the formation of a two-dimensional counter-rotating vortex pair. A piston-cylinder mechanism is used to generate a starting jet from a high-aspect-ratio channel into a quiescent medium. For a rigid exit, with no leaflets at the channel exit, the measurements at a central plane show that the trailing jet in the present case is never detached from the vortex pair, and keeps feeding into the latter, unlike in the axisymmetric case. Passive flexibility is introduced in the form of rigid leaflets or flaps that are hinged at the exit of the channel, with the flaps initially parallel to the channel walls. The experimental arrangement closely approximates the limiting case of a free-to-rotate rigid flap with negligible structural stiffness, damping and flap inertia, as these limiting structural properties permit the largest flap openings. Using this arrangement, we start the flow and measure the flap kinematics and the vorticity fields for different flap lengths and piston velocity programs. The typical motion of the flaps involves a rapid opening and a subsequent more gradual return to its initial position, both of which occur when the piston is still moving. The initial opening of the flaps can be attributed to an excess pressure that develops in the channel when the flow starts, due to the acceleration that has to be imparted to the fluid slug between the flaps. In the case with flaps, two additional pairs of vortices are formed because of the motion of the flaps, leading to the ejection of a total of up to three vortex pairs from the hinged exit. The flaps' length (L-f) is found to significantly affect flap motions when plotted using the conventional time scale L/d, where L is the piston stroke and d is the channel width. However, with a newly defined time scale based on the flap length (L/L-f), we find a good collapse of all the measured flap motions irrespective of flap length and piston velocity for an impulsively started piston motion. The maximum opening angle in all these impulsive velocity program cases, irrespective of the flap length, is found to be close to 15 degrees. Even though the flap kinematics collapses well with L/L-f, there are differences in the distribution of the ejected vorticity even for the same L/L-f. Such a redistribution of vorticity can lead to important changes in the overall properties of the flow, and it gives us a better understanding of the importance of exit flexibility in such flows.
Resumo:
We present evidence that the springtime western boundary current (WBC) in the Bay of Bengal is a continuous northward-flowing current from about 12 degrees N to 17 degrees N, which then separates from the coast at around 18 degrees N. We first revisit a hydrographic data set collected in 1987 from a potential vorticity perspective, and then analyze absolute dynamic height maps from satellite altimeters during the period 2000-2010. The altimetric maps suggest that the mean configuration of the WBC is that of an intense current with two anticyclonic eddies on the offshore side, which are part of the basin-wide anticyclonic circulation. The WBC consistently separates from the coast at around 18 degrees N in all years between 2000 and 2010. The path of the eastward-flowing mean stream after separation appears to be consistent with isolines of f/H and with Ertel's potential vorticity, based on an analysis of the hydrographic data from 1987.
Resumo:
Experiments were conducted to measure the heat flux in the vicinity of a three-dimensional protuberance placed on a flat plate facing a hypersonic flow at zero angle of attack. The effects of flow enthalpy and height of the protuberance on the interference heating in its vicinity were studied. Evidence of disturbed flow with highly three-dimensional characteristics and heightened vorticity was observed near the protrusion. A parametric study by changing the deflection angle of the protuberance was also made. Correlations exist in the open literature for enthalpy values lower than 2 MJ/kg. This effort has yielded a new correlation that is valid for enthalpies up to 6 MJ/kg. The Z-type schlieren technique was used to visualize the flow features qualitatively for one of the flow conditions studied.
Resumo:
This paper attempts to unravel any relations that may exist between turbulent shear flows and statistical mechanics through a detailed numerical investigation in the simplest case where both can be well defined. The flow considered for the purpose is the two-dimensional (2D) temporal free shear layer with a velocity difference Delta U across it, statistically homogeneous in the streamwise direction (x) and evolving from a plane vortex sheet in the direction normal to it (y) in a periodic-in-x domain L x +/-infinity. Extensive computer simulations of the flow are carried out through appropriate initial-value problems for a ``vortex gas'' comprising N point vortices of the same strength (gamma = L Delta U/N) and sign. Such a vortex gas is known to provide weak solutions of the Euler equation. More than ten different initial-condition classes are investigated using simulations involving up to 32 000 vortices, with ensemble averages evaluated over up to 10(3) realizations and integration over 10(4)L/Delta U. The temporal evolution of such a system is found to exhibit three distinct regimes. In Regime I the evolution is strongly influenced by the initial condition, sometimes lasting a significant fraction of L/Delta U. Regime III is a long-time domain-dependent evolution towards a statistically stationary state, via ``violent'' and ``slow'' relaxations P.-H. Chavanis, Physica A 391, 3657 (2012)], over flow time scales of order 10(2) and 10(4)L/Delta U, respectively (for N = 400). The final state involves a single structure that stochastically samples the domain, possibly constituting a ``relative equilibrium.'' The vortex distribution within the structure follows a nonisotropic truncated form of the Lundgren-Pointin (L-P) equilibrium distribution (with negatively high temperatures; L-P parameter lambda close to -1). The central finding is that, in the intermediate Regime II, the spreading rate of the layer is universal over the wide range of cases considered here. The value (in terms of momentum thickness) is 0.0166 +/- 0.0002 times Delta U. Regime II, extensively studied in the turbulent shear flow literature as a self-similar ``equilibrium'' state, is, however, a part of the rapid nonequilibrium evolution of the vortex-gas system, which we term ``explosive'' as it lasts less than one L/Delta U. Regime II also exhibits significant values of N-independent two-vortex correlations, indicating that current kinetic theories that neglect correlations or consider them as O(1/N) cannot describe this regime. The evolution of the layer thickness in present simulations in Regimes I and II agree with the experimental observations of spatially evolving (3D Navier-Stokes) shear layers. Further, the vorticity-stream-function relations in Regime III are close to those computed in 2D Navier-Stokes temporal shear layers J. Sommeria, C. Staquet, and R. Robert, J. Fluid Mech. 233, 661 (1991)]. These findings suggest the dominance of what may be called the Kelvin-Biot-Savart mechanism in determining the growth of the free shear layer through large-scale momentum and vorticity dispersal.