962 resultados para Voltage stability margin


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The conventional Newton's method has been considered inadequate to obtain the maximum loading point (MLP) of power systems. It is due to the Jacobian matrix singularity at this point. However, the MLP can be efficiently computed through parameterization techniques of continuation methods. This paper presents and tests new parameterization schemes, namely the total power losses (real and reactive), the power at the slack bus (real or reactive), the reactive power at generation buses, the reactive power at shunts (capacitor or reactor), the transmission lines power losses (real and reactive), and transmission lines power (real and reactive). Besides their clear physical meaning, which makes easier the development and application of continuation methods for power systems analysis, the main advantage of some of the proposed parameters is that its not necessary to change the parameter in the vicinity of the MLP. Studies on the new parameterization schemes performed on the IEEE 118 buses system show that the ill-conditioning problems at and near the MLP are eliminated. So, the characteristics of the conventional Newton's method are not only preserved but also improved. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The conventional Newton's method is considered to be inadequate for the computation of the maximum loading point (MLP) of power systems since: (i) it encounters difficulties in the vicinity of the MLP: and (ii) the load flow Jacobian matrix becomes singular at the MLP. It is well known that continuation methods are powerful and useful tools that are able to trace the solution PV curve without experiencing such diffculties. However, continuation methods require a parameterisation so that a modified, well conditioned set of load flow equations is obtained. In particular, the Jacobian matrix associated with this modified set of equations should not be singular at the MLP. The authors propose that the actual power losses in transmission branches (lines and transformers) are used to parameterise the approach. Specific procedures for the automatic determination of the most appropriate parameter (branch) are proposed. Such procedures include the utilisation of fast voltage-stability indices. Simulation results are presented to show that the proposed method is able to trace the whole solution PV curve very efficiently.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The conventional power flow method is considered to be inadequate to obtain the maximum loading point because of the singularity of Jacobian matrix. Continuation methods are efficient tools for solving this kind of problem since different parameterization schemes can be used to avoid such ill-conditioning problems. This paper presents the details of new schemes for the parameterization step of the continuation power flow method. The new parameterization options are based on physical parameters, namely, the total power losses (real and reactive), the power at the slack bus (real or reactive), the reactive power at generation buses, and transmission line power losses (real and reactive). The simulation results obtained with the new approach for the IEEE test systems (14, 30, 57, and 118 buses) are presented and discussed in the companion paper. The results show that the characteristics of the conventional method are not only preserved but also improved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

New parameterization schemes have been proposed by the authors in Part I of this paper. In this part these new options for the parameterization of power flow equations are tested, namely, the total power losses (real and reactive), the power at the slack bus (real or reactive), the reactive power at generation buses, and the transmission line power losses (real and reactive). These different parameterization schemes can be used to obtain the maximum loading point without ill-conditioning problems, once the singularity of Jacobian matrix is avoided. The results obtained with the new approach for the IEEE test systems (14, 30, 57, and 118 buses) show that the characteristics of the conventional method are not only preserved but also improved. In addition, it is shown that the proposed method and the conventional one can be switched during the tracing of PV curves to determine, with few iterations, all points of the PV curve. Several tests were also carried out to compare the performance of the proposed parameterization schemes for the continuation power flow method with the use of both the secant and tangent predictors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Indices that report how much a contingency is stable or unstable in an electrical power system have been the object of several studies in the last decades. In some approaches, indices are obtained from time-domain simulation; others explore the calculation of the stability margin from the so-called direct methods, or even by neural networks.The goal is always to obtain a fast and reliable way of analysing large disturbance that might occur on the power systems. A fast classification in stable and unstable, as a function of transient stability is crucial for a dynamic security analysis. All good propositions as how to analyse contingencies must present some important features: classification of contingencies; precision and reliability; and efficiency computation. Indices obtained from time-domain simulations have been used to classify the contingencies as stable or unstable. These indices are based on the concepts of coherence, transient energy conversion between kinetic energy and potential energy, and three dot products of state variable. The classification of the contingencies using the indices individually is not reliable, since the performance of these indices varies with each simulated condition. However, collapsing these indices into a single one can improve the analysis significantly. In this paper, it is presented the results of an approach to filter the contingencies, by a simple classification of them into stable, unstable or marginal. This classification is performed from the composite indices obtained from step by step simulation with a time period of the clearing time plus 0.5 second. The contingencies originally classified as stable or unstable do not require this extra simulation. The methodology requires an initial effort to obtain the values of the intervals for classification, and the weights. This is performed once for each power system and can be used in different operating conditions and for different contingencies. No misplaced classification o- - ccurred in any of the tests, i.e., we detected no stable case classified as unstable or otherwise. The methodology is thus well fitted for it allows for a rapid conclusion about the stability of th system, for the majority of the contingencies (Stable or Unstable Cases). The tests, results and discussions are presented using two power systems: (1) the IEEE17 system, composed of 17 generators, 162 buses and 284 transmission lines; and (2) a South Brazilian system configuration, with 10 generators, 45 buses and 71 lines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A presente dissertação de mestrado avalia os afundamentos e a estabilidade de tensão de um sistema elétrico real com inserção de parques eólicos. Os estudos de afundamentos de tensão servem de base para a determinação das áreas de vulnerabilidade do sistema elétrico, nas quais, por sua vez, são investigados os aspectos referentes à instabilidade de tensão ocasionada pela integração de parques eólicos com geradores assíncronos. Para este fim, é utilizado o programa computacional ANAQUALI, desenvolvido pelo CEPEL (Centro de Pesquisas de Energia Elétrica). No estudo do comportamento dinâmico da tensão decorrente de curto-circuito, no qual o sistema eólico é inserido nas concepções de velocidade fixa e velocidade variável, utiliza-se um programa computacional desenvolvido no aplicativo MATLABTM. Os resultados dessas simulações evidenciam que o sistema eólico de velocidade variável proporciona uma maior margem de estabilidade de tensão ao sistema elétrico, devido à presença do controle de velocidade e de tensão. Estes estudos não são comumente aplicados aos sistemas de geração distribuída, e por isso, esta dissertação contribui também neste aspecto, podendo seus resultados servir de base para o planejamento de centrais cólicas inseridas em sistemas elétricos convencionais.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In weak grids, an important problem with voltage stability and protections coordination of power plants exists. This problem appears because all the generation groups are connected to the same bus bar. As a result, if a fault occurs in any of the generation groups, or in the bus bar that connect them, the system voltage will have large oscillations. Hence, in weak grids the correct adjustment of AVR (Automatic Voltage Regulator) is critical. In this work an experimental study of differents AVR adjustments against fault in weak grids is described.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bifurcation analysis is a very useful tool for power system stability assessment. In this paper, detailed investigation of power system bifurcation behaviour is presented. One and two parameter bifurcation analysis are conducted on a 3-bus power system. We also examined the impact of FACTS devices on power system stability through Hopf bifurcation analysis by taking static Var compensator (SVC) as an example. A simplified first-order model of the SVC device is included in the 3-bus sample system. Real and reactive powers are used as bifurcation parameter in the analysis to compare the system oscillatory properties with and without SVC. The simulation results indicate that the linearized system model with SVC enlarge the voltage stability boundary by moving Hopf bifurcation point to higher level of loading conditions. The installation of SVC increases the dynamic stability range of the system, however complicates the Hopf bifurcation behavior of the system

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A hybrid passive-active damping solution with improved system stability margin and enhanced dynamic performance is proposed for high power grid interactive converters. In grid connected active rectifier/inverter application, line side LCL filter improves the high frequency attenuation and makes the converter compatible with the stringent grid power quality regulations. Passive damping though offers a simple and reliable solution but it reduces overall converter efficiency. Active damping solutions do not increase the system losses but can guarantee the stable operation up to a certain speed of dynamic response which is limited by the maximum bandwidth of the current controller. This paper examines this limit and introduces a concept of hybrid passive-active damping solution with improved stability margin and high dynamic performance for line side LCL filter based active rectifier/inverter applications. A detailed design, analysis of the hybrid approach and trade-off between system losses and dynamic performance in grid connected applications are reported. Simulation and experimental results from a 10 kVA prototype demonstrate the effectiveness of the proposed solution. An analytical study on system stability and dynamic response with the variations of various controller and passive filter parameters is presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this contribution, a stability analysis for a dynamic voltage restorer (DVR) connected to a weak ac system containing a dynamic load is presented using continuation techniques and bifurcation theory. The system dynamics are explored through the continuation of periodic solutions of the associated dynamic equations. The switching process in the DVR converter is taken into account to trace the stability regions through a suitable mathematical representation of the DVR converter. The stability regions in the Thevenin equivalent plane are computed. In addition, the stability regions in the control gains space, as well as the contour lines for different Floquet multipliers, are computed. Besides, the DVR converter model employed in this contribution avoids the necessity of developing very complicated iterative map approaches as in the conventional bifurcation analysis of converters. The continuation method and the DVR model can take into account dynamics and nonlinear loads and any network topology since the analysis is carried out directly from the state space equations. The bifurcation approach is shown to be both computationally efficient and robust, since it eliminates the need for numerically critical and long-lasting transient simulations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Analyses of photovoltaic power generation based on Lyapunov's theorems are presented. The characteristics of the photovoltaic module and the power conditioning unit are analyzed in order to establish energy functions that assess the stability of solutions and define safe regions of operation. Furthermore, it is shown that grid-connected photovoltaic modules driven at maximum power may become unstable under normal grid transients. In such cases, stability can be maintained by allowing an operational margin defined as the energy difference between the stable and the unstable solutions of the system. Simulations show that modules cope well with grid transients when a sufficiently large margin is used.