79 resultados para Voisinage
Resumo:
Les métaheuristiques sont très utilisées dans le domaine de l'optimisation discrète. Elles permettent d’obtenir une solution de bonne qualité en un temps raisonnable, pour des problèmes qui sont de grande taille, complexes, et difficiles à résoudre. Souvent, les métaheuristiques ont beaucoup de paramètres que l’utilisateur doit ajuster manuellement pour un problème donné. L'objectif d'une métaheuristique adaptative est de permettre l'ajustement automatique de certains paramètres par la méthode, en se basant sur l’instance à résoudre. La métaheuristique adaptative, en utilisant les connaissances préalables dans la compréhension du problème, des notions de l'apprentissage machine et des domaines associés, crée une méthode plus générale et automatique pour résoudre des problèmes. L’optimisation globale des complexes miniers vise à établir les mouvements des matériaux dans les mines et les flux de traitement afin de maximiser la valeur économique du système. Souvent, en raison du grand nombre de variables entières dans le modèle, de la présence de contraintes complexes et de contraintes non-linéaires, il devient prohibitif de résoudre ces modèles en utilisant les optimiseurs disponibles dans l’industrie. Par conséquent, les métaheuristiques sont souvent utilisées pour l’optimisation de complexes miniers. Ce mémoire améliore un procédé de recuit simulé développé par Goodfellow & Dimitrakopoulos (2016) pour l’optimisation stochastique des complexes miniers stochastiques. La méthode développée par les auteurs nécessite beaucoup de paramètres pour fonctionner. Un de ceux-ci est de savoir comment la méthode de recuit simulé cherche dans le voisinage local de solutions. Ce mémoire implémente une méthode adaptative de recherche dans le voisinage pour améliorer la qualité d'une solution. Les résultats numériques montrent une augmentation jusqu'à 10% de la valeur de la fonction économique.
Resumo:
Un matériau semi-conducteur utilisé lors de la fabrication d’antennes térahertz (THz), le quaternaire InGaAsP (E_g = 0,79 eV), subit une implantation ionique de Fe suivi d’un recuit thermique rapide (RTA) dans le but d’améliorer ses propriétés d’émission. Le recuit est nécessaire afin de recristalliser la couche amorphisée lors de l’implantation, donnant lieu à un polycristal rempli de défauts de recristallisation. On constate cependant que les matériaux implantés Fe offrent de meilleures performances que ceux simplement endommagés au Ga. Dans le but de départager l’effet des défauts de recristallisation et des impuretés de Fe, des mesures de spectroscopie transitoire des niveaux profonds (DLTS) et de DLTS en courant (I-DLTS), ainsi que de spectrométrie de masse d’ions secondaires par temps de vol (ToF-SIMS) ont été effectuées sur des échantillons non implantés et d’autres recristallisés. Les mesures DLTS et I-DLTS ont pour but de caractériser les niveaux profonds générés par ces deux procédures postcroissance, tout en identifiant le rôle que jouent les impuretés de Fe sur la formation de ces niveaux profonds. De plus, le voisinage des atomes de Fe dans le matériau recristallisé a été étudié à l’aide des mesures ToF-SIMS. Les mesures DLTS sur matériau recristallisé sont peu concluantes, car la mesure de capacité est faussée par la haute résistivité du matériau. Par contre, les mesures I-DLTS sur matériau recristallisé ont permis de conclure que les impuretés de Fe sont responsables de la formation d’une grande variété de niveaux d’énergie se trouvant entre 0,25 et 0,40 eV, alors que les défauts de structure induisent des niveaux de moins de 0,25 eV. La concentration de Fe est élevée par rapport au seuil de solubilité du Fe dans le matériau recristallisé. Il serait donc plausible que des agrégats de Fe se forment. Toutefois, cette hypothèse est infirmée par l'absence de pic aux masses correspondant à la molécule ^(56)Fe_2^+ sur les spectres ToF-SIMS. De plus, un modèle simple est utilisé afin d’estimer si certaines masses présentes sur les spectres ToF-SIMS correspondent à des liaisons non induites par la mesure dans le matériau recristallisé. Bien qu’aucune liaison avec le Ga et l'As n’est détectable, ce modèle n’exclut pas la possibilité de liens préférentiels avec l’In.
Resumo:
Les métaheuristiques sont très utilisées dans le domaine de l'optimisation discrète. Elles permettent d’obtenir une solution de bonne qualité en un temps raisonnable, pour des problèmes qui sont de grande taille, complexes, et difficiles à résoudre. Souvent, les métaheuristiques ont beaucoup de paramètres que l’utilisateur doit ajuster manuellement pour un problème donné. L'objectif d'une métaheuristique adaptative est de permettre l'ajustement automatique de certains paramètres par la méthode, en se basant sur l’instance à résoudre. La métaheuristique adaptative, en utilisant les connaissances préalables dans la compréhension du problème, des notions de l'apprentissage machine et des domaines associés, crée une méthode plus générale et automatique pour résoudre des problèmes. L’optimisation globale des complexes miniers vise à établir les mouvements des matériaux dans les mines et les flux de traitement afin de maximiser la valeur économique du système. Souvent, en raison du grand nombre de variables entières dans le modèle, de la présence de contraintes complexes et de contraintes non-linéaires, il devient prohibitif de résoudre ces modèles en utilisant les optimiseurs disponibles dans l’industrie. Par conséquent, les métaheuristiques sont souvent utilisées pour l’optimisation de complexes miniers. Ce mémoire améliore un procédé de recuit simulé développé par Goodfellow & Dimitrakopoulos (2016) pour l’optimisation stochastique des complexes miniers stochastiques. La méthode développée par les auteurs nécessite beaucoup de paramètres pour fonctionner. Un de ceux-ci est de savoir comment la méthode de recuit simulé cherche dans le voisinage local de solutions. Ce mémoire implémente une méthode adaptative de recherche dans le voisinage pour améliorer la qualité d'une solution. Les résultats numériques montrent une augmentation jusqu'à 10% de la valeur de la fonction économique.
Resumo:
Les travaux de ce mémoire traitent du problème d’ordonnancement et d’optimisation de la production dans un environnement de plusieurs machines en présence de contraintes sur les ressources matérielles dans une usine d’extrusion plastique. La minimisation de la somme pondérée des retards est le critère économique autour duquel s’articule cette étude car il représente un critère très important pour le respect des délais. Dans ce mémoire, nous proposons une approche exacte via une formulation mathématique capable des donner des solutions optimales et une approche heuristique qui repose sur deux méthodes de construction de solution sérielle et parallèle et un ensemble de méthodes de recherche dans le voisinage (recuit-simulé, recherche avec tabous, GRASP et algorithme génétique) avec cinq variantes de voisinages. Pour être en totale conformité avec la réalité de l’industrie du plastique, nous avons pris en considération certaines caractéristiques très fréquentes telles que les temps de changement d’outils sur les machines lorsqu’un ordre de fabrication succède à un autre sur une machine donnée. La disponibilité des extrudeuses et des matrices d’extrusion représente le goulot d’étranglement dans ce problème d’ordonnancement. Des séries d’expérimentations basées sur des problèmes tests ont été effectuées pour évaluer la qualité de la solution obtenue avec les différents algorithmes proposés. L’analyse des résultats a démontré que les méthodes de construction de solution ne sont pas suffisantes pour assurer de bons résultats et que les méthodes de recherche dans le voisinage donnent des solutions de très bonne qualité. Le choix du voisinage est important pour raffiner la qualité de la solution obtenue. Mots-clés : ordonnancement, optimisation, extrusion, formulation mathématique, heuristique, recuit-simulé, recherche avec tabous, GRASP, algorithme génétique