166 resultados para Vitrinite Macerals
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
The porosity and pore size distribution of coals determine many of their properties, from gas release to their behavior on carbonization, and yet most methods of determining pore size distribution can only examine a restricted size range. Even then, only accessible pores can be investigated with these methods. Small-angle neutron scattering (SANS) and ultra small-angle neutron scattering (USANS) are increasingly used to characterize the size distribution of all of the pores non-destructively. Here we have used USANS/SANS to examine 24 well-characterized bituminous and subbituminous coals: three from the eastern US, two from Poland, one from New Zealand and the rest from the Sydney and Bowen Basins in Eastern Australia, and determined the relationships of the scattering intensity corresponding to different pore sizes with other coal properties. The range of pore radii examinable with these techniques is 2.5nm to 7μm. We confirm that there is a wide range of pore sizes in coal. The pore size distribution was found to be strongly affected by both rank and type (expressed as either hydrogen or vitrinite content) in the size range 250nm to 7μm and 5 to 10nm, but weakly in intermediate regions. The results suggest that different mechanisms control coal porosity on different scales. Contrast-matching USANS and SANS were also used to determine the size distribution of the fraction of the pores in these coals that are inaccessible to deuterated methane, CD4, at ambient temperature. In some coals most of the small (~10nm) pores were found to be inaccessible to CD4 on the time scale of the measurement (~30min–16h). This inaccessibility suggests that in these coals a considerable fraction of inherent methane may be trapped for extended periods of time, thus reducing the effectiveness of methane release from (or sorption by) these coals. Although the number of small pores was less in higher rank coals, the fraction of total pores that was inaccessible was not rank dependent. In the Australian coals, at the 10nm to 50nm size scales the pores in inertinites appeared to be completely accessible to CD4, whereas the pores in the vitrinite were about 75% inaccessible. Unlike the results for total porosity that showed no regional effects on relationships between porosity and coal properties, clear regional differences in the relationships between fraction of closed porosity and coal properties were found. The 10 to 50nm-sized pores of inertinites of the US and Polish coals examined appeared less accessible to methane than those of the inertinites of Australian coals. This difference in pore accessibility in inertinites may explain why empirical relationships between fluidity and coking properties developed using Carboniferous coals do not apply to Australian coals.
Resumo:
O estudo geoquímico detalhado em dois poços (A e B) na porção oeste da Bacia do Amazonas visou o entendimento da quantidade, fonte e evolução térmica da matéria orgânica presente nas Formações Ererê, Barreirinha e Curiri. Foram efetuadas análises de Carbono Orgânico Total (COT), pirólise Rock-Eval e biomarcadores. Os teores de carbono orgânico total da Formação Barreirinha (Membro Abacaxis) que variam de 1,43% a 8,39%, indicaram que este intervalo possui quantidade de matéria orgânica necessária para ser considerado potencialmente gerador de óleo e gás. As outras unidades litoestratigráficas apresentaram teores de COT pouco significativos. Com base nos dados de pirólise, identificou-se que o intervalo com o melhor potencial gerador corresponde ao Membro Abacaxis. Esta seção no poço A possui índice de hidrogênio (IH) ligeiramente superior a 200 mg HC/gCOT e um potencial gerador (S2)variando de 4 a 17,76 mg de HC/g de rocha, indicando um bom à excelente potencial adequado à geração de gás e condensado. Já no poço B, em decorrência do aumento da evolução térmica, os valores de S2 e IH são mais baixos(variando de 5 a 10 mgHC/g de rocha e com valores entre 50 e 150 mg HC/gCOT, respectivamente), apenas indicando um bom potencial à geração de gás. Segundo diagrama tipo Van Krevlen, a matéria orgânica deste intervalo é heterogênea e se comporta como querogênio tipo II e III no poço A e do tipo III e IV no poço B. As características dos biomarcadores encontrados no Membro Abacaxis indicam uma origem algal e ambiente marinho. O Membro Urariá e a Formação Curiri apresentam indicadores sugestivos de aporte de matéria orgânica de origem terrestre, sendo que o Membro Urariá ainda mostra algumas assinaturas semelhantes com o Membro Abacaxis. Devido a baixa concentração dos biomarcadores cíclicos nas amostras do Poço B, não foi possível realizar uma caracterização da fonte da matéria orgânica da Formação Ererê. A avaliação dos parâmetros utilizados para a interpretação da evolução térmica, como Tmax, taxa de transformação (TT), índice de produção (IP), reflectância da vitrinita calculada (Roc) e razões entre alcanos lineares e ramificados (P/nC17 e F/nC18), indicaram que no intervalo gerador do Poço A houve geração de hidrocarbonetos, mas ainda não correu a migração. No caso do Poço B, os dados mostram que neste intervalo já houve geração e migração de hidrocarbonetos.