947 resultados para Visual-mental-imagery
Resumo:
L’imagerie musicale involontaire (IMIN) est un phénomène mental extrêmement commun. Il peut être défini en tant que type d’imagerie mentale musicale qui devient consciente sans effort ou intentionnalité et qui n’est pas pathologique. La forme la plus connue d’IMIN est le « ver d’oreille », qui se présente généralement comme un court extrait musical tournant en boucle en tête et dont on se débarrasse difficilement. L’objectif principal de la présente thèse est d’investiguer les mécanismes cognitifs sous-tendant le phénomène puisque, malgré l’intérêt répandu dans les médias populaires, son étude expérimentale est récente et un modèle intégré n’a pas encore été proposé. Dans la première étude, l’induction expérimentale a été tentée et les caractéristiques des images mentales d’épisodes d’IMIN ont été investiguées. Dans le laboratoire, des chansons accrocheuses (versus des proverbes) ont été présentées répétitivement aux participants qui devaient ensuite les chanter le plus fidèlement possible. Ils ont par après quitté le laboratoire, une enregistreuse numérique en mains, avec la consigne d’enregistrer une reproduction vocale la plus fidèle possible de ce qu’ils avaient en tête lors de tous leurs épisodes d’IMIN sur une période de quatre jours, ainsi que de décrire leur timbre. L’expérience a été répétée deux semaines plus tard. Douze des dix-huit participants du groupe expérimental ont rapporté des pièces induites comme épisodes d’IMIN, ce qui confirme l’efficacité de la procédure d’induction. La tonalité et le tempo des productions ont ensuite été analysés et comparés à ceux des pièces originales. Similairement pour les épisodes d’IMIN induits et les autres, les tempi produits et, dans une moindre mesure pour les non-musiciens, les tonalités étaient proches des originaux. Le timbre décrit était généralement une version simplifiée de l’original (un instrument et/ou une voix). Trois études se sont ensuite intéressées au lien entre le potentiel d’IMIN et la mémorabilité. Dans une étude préliminaire, 150 chansons du palmarès francophone radiophonique ont été évaluées en ligne par 164 participants, sur leur niveau de familiarité, d’appréciation et de potentiel d’IMIN. Les pièces ont ensuite été divisées en groupes de stimuli à faible et à fort potentiel d’IMIN, qui ont été utilisés dans une tâche typique de rappel libre/reconnaissance, premièrement avec des francophones (pour qui les pièces étaient familières) et ensuite avec des non-francophones (pour qui les pièces étaient non-familières). Globalement, les pièces à fort potentiel d’IMIN étaient mieux rappelées et reconnues que les pièces à faible potentiel. Une dernière étude a investigué l’impact de la variabilité inter-stimulus du timbre sur les résultats précédents, en demandant à une chanteuse d’enregistrer les lignes vocales des pièces et en répétant l’expérience avec ces nouveaux stimuli. La différence précédemment observée entre les stimuli à fort et à faible potentiel d’IMIN dans la tâche de reconnaissance a ainsi disparu, ce qui suggère que le timbre est une caractéristique importante pour le potentiel d’IMIN. En guise de conclusion, nous suggérons que les phénomènes mentaux et les mécanismes cognitifs jouant un rôle dans les autres types de souvenirs involontaires peuvent aussi s’appliquer à l’IMIN. Dépendamment du contexte, la récupération mnésique des pièces peut résulter de la répétition en mémoire à court terme, de l’amorçage à court et long terme ou de l’indiçage provenant de stimuli dans l’environnement ou les pensées. Une des plus importantes différences observables entre l’IMIN et les autres souvenirs involontaires est la répétition. Nous proposons que la nature même de la musique, qui est définie par la répétition à un niveau micro- et macro-structurel en est responsable.
Resumo:
Four experiments examined how people operate on memory representations of familiar songs. The tasks were similar to those used in studies of visual imagery. In one task, subjects saw a one word lyric from a song and then saw a second lyric; then they had to say if the second lyric was from the same song as the first. In a second task, subjects mentally compared pitches of notes corresponding to song lyrics. In both tasks, reaction time increased as a function of the distance in beats between the two lyrics in the actual song, and in some conditions reaction time increased with the starting beat of the earlier lyric. Imagery instructions modified the main results somewhat in the first task, but not in the second, much harder task. The results suggest that song representations have temporal-like characteristics. (PsycINFO Database Record (c) 2012 APA, all rights reserved)
Resumo:
It has been claimed that the symptoms of post-traumatic stress disorder (PTSD) can be ameliorated by eye-movement desensitization-reprocessing therapy (EMD-R), a procedure that involves the individual making saccadic eye-movements while imagining the traumatic event. We hypothesized that these eye-movements reduce the vividness of distressing images by disrupting the function of the visuospatial sketchpad (VSSP) of working memory, and that by doing so they reduce the intensity of the emotion associated with the image. This hypothesis was tested by asking non-PTSD participants to form images of neutral and negative pictures under dual task conditions. Their images were less vivid with concurrent eye-movements and with a concurrent spatial tapping task that did not involve eye-movements. In the first three experiments, these secondary tasks did not consistently affect participants' emotional responses to the images. However, Expt 4 used personal recollections as stimuli for the imagery task, and demonstrated a significant reduction in emotional response under the same dual task conditions. These results suggest that, if EMD-R works, it does so by reducing the vividness and emotiveness of traumatic images via the VSSP of working memory. Other visuospatial tasks may also be of therapeutic value.
Resumo:
In most visual mapping applications suited to Autonomous Underwater Vehicles (AUVs), stereo visual odometry (VO) is rarely utilised as a pose estimator as imagery is typically of very low framerate due to energy conservation and data storage requirements. This adversely affects the robustness of a vision-based pose estimator and its ability to generate a smooth trajectory. This paper presents a novel VO pipeline for low-overlap imagery from an AUV that utilises constrained motion and integrates magnetometer data in a bi-objective bundle adjustment stage to achieve low-drift pose estimates over large trajectories. We analyse the performance of a standard stereo VO algorithm and compare the results to the modified vo algorithm. Results are demonstrated in a virtual environment in addition to low-overlap imagery gathered from an AUV. The modified VO algorithm shows significantly improved pose accuracy and performance over trajectories of more than 300m. In addition, dense 3D meshes generated from the visual odometry pipeline are presented as a qualitative output of the solution.
Resumo:
Recent memories are generally recalled from a first-person perspective whereas older memories are often recalled from a third-person perspective. We investigated how repeated retrieval affects the availability of visual information, and whether it could explain the observed shift in perspective with time. In Experiment 1, participants performed mini-events and nominated memories of recent autobiographical events in response to cue words. Next, they described their memory for each event and rated its phenomenological characteristics. Over the following three weeks, they repeatedly retrieved half of the mini-event and cue-word memories. No instructions were given about how to retrieve the memories. In Experiment 2, participants were asked to adopt either a first- or third-person perspective during retrieval. One month later, participants retrieved all of the memories and again provided phenomenology ratings. When first-person visual details from the event were repeatedly retrieved, this information was retained better and the shift in perspective was slowed.
Resumo:
Many actors—including scientists, journalists, artists, and campaigning organizations—create visualizations of climate change. In doing so, they evoke climate change in particular ways, and make the issue meaningful in everyday discourse. While a diversity of climate change imagery exists, particular types of climate imagery appear to have gained dominance, promoting particular ways of knowing about climate change (and marginalizing others). This imagery, and public engagement with this imagery, helps to shape the cultural politics of climate change in important ways. This article critically reviews the nascent research area of the visual representations of climate change, and public engagement with visual imagery. It synthesizes a diverse body of research to explore visual representations and engagement across the news media, NGO communications, advertising, and marketing, climate science, art, and virtual reality systems. The discussion brings together three themes which occur throughout the review: time, truth, and power. The article concludes by suggesting fruitful directions for future research in the visual communication of climate change.
Resumo:
The experience of earworms, a type of involuntary musical imagery, may reflect a systematic failure in mental control. This study focused on how individual differences in each of two factors, schizotypy, or “openness to experience”, and thought suppression might relate to the appearance of the involuntary musical image (earworm). Schizotypy, was measured by Raine’s schizotypal personality questionnaire (SPQ; Raine, 1991) and thought suppression was measured by the White Bear Suppression Inventory (WBSI; Wegner & Zanakos, 1994). Each was found to contribute independently to the overall experience of involuntary musical imagery. Schizotypy was correlated with the length and disruptiveness of earworms, the difficulty with which they were dismissed and the worry they caused, but was not correlated with the frequency of such intrusive imagery. In turn, schizotypy was predicted by suppression and intrusion components of WBSI. The WBSI is associated with the length, disruptiveness, difficulty dismissing and interference but not with the worry caused or the frequency of earworms. The assumption of “ownership” of earworms was also found to affect the extent to which the earworms were considered worrying. Multiple regression analysis showed that both schizotypy and the WBSI predicted the difficulty with which unwanted musical images were dismissed, but that the WBSI accounted for additional variance on top of that accounted for by schizotypy. Finally we consider how earworm management might relate to wider cognitive processes.
Resumo:
Virtual Reality (VR) can provide visual stimuli for EEG studies that can be altered in real time and can produce effects that are difficult or impossible to reproduce in a non-virtual experimental platform. As part of this experiment the Oculus Rift, a commercial-grade, low-cost, Head Mounted Display (HMD) was assessed as a visual stimuli platform for experiments recording EEG. Following, the device was used to investigate the effect of congruent visual stimuli on Event Related Desynchronisation (ERD) due to motion imagery.
Dynamic Changes in the Mental Rotation Network Revealed by Pattern Recognition Analysis of fMRI Data
Resumo:
We investigated the temporal dynamics and changes in connectivity in the mental rotation network through the application of spatio-temporal support vector machines (SVMs). The spatio-temporal SVM [Mourao-Miranda, J., Friston, K. J., et al. (2007). Dynamic discrimination analysis: A spatial-temporal SVM. Neuroimage, 36, 88-99] is a pattern recognition approach that is suitable for investigating dynamic changes in the brain network during a complex mental task. It does not require a model describing each component of the task and the precise shape of the BOLD impulse response. By defining a time window including a cognitive event, one can use spatio-temporal fMRI observations from two cognitive states to train the SVM. During the training, the SVM finds the discriminating pattern between the two states and produces a discriminating weight vector encompassing both voxels and time (i.e., spatio-temporal maps). We showed that by applying spatio-temporal SVM to an event-related mental rotation experiment, it is possible to discriminate between different degrees of angular disparity (0 degrees vs. 20 degrees, 0 degrees vs. 60 degrees, and 0 degrees vs. 100 degrees), and the discrimination accuracy is correlated with the difference in angular disparity between the conditions. For the comparison with highest accuracy (08 vs. 1008), we evaluated how the most discriminating areas (visual regions, parietal regions, supplementary, and premotor areas) change their behavior over time. The frontal premotor regions became highly discriminating earlier than the superior parietal cortex. There seems to be a parcellation of the parietal regions with an earlier discrimination of the inferior parietal lobe in the mental rotation in relation to the superior parietal. The SVM also identified a network of regions that had a decrease in BOLD responses during the 100 degrees condition in relation to the 0 degrees condition (posterior cingulate, frontal, and superior temporal gyrus). This network was also highly discriminating between the two conditions. In addition, we investigated changes in functional connectivity between the most discriminating areas identified by the spatio-temporal SVM. We observed an increase in functional connectivity between almost all areas activated during the 100 degrees condition (bilateral inferior and superior parietal lobe, bilateral premotor area, and SMA) but not between the areas that showed a decrease in BOLD response during the 100 degrees condition.
Resumo:
Programa de doctorado: Comportamiento humano en contextos deportivos, de ejercicio y actividad física
Resumo:
The body is represented in the brain at levels that incorporate multisensory information. This thesis focused on interactions between vision and cutaneous sensations (i.e., touch and pain). Experiment 1 revealed that there are partially dissociable pathways for visual enhancement of touch (VET) depending upon whether one sees one’s own body or the body of another person. This indicates that VET, a seeming low-level effect on spatial tactile acuity, is actually sensitive to body identity. Experiments 2-4 explored the effect of viewing one’s own body on pain perception. They demonstrated that viewing the body biases pain intensity judgments irrespective of actual stimulus intensity, and, more importantly, reduces the discriminative capacities of the nociceptive pathway encoding noxious stimulus intensity. The latter effect only occurs if the pain-inducing event itself is not visible, suggesting that viewing the body alone and viewing a stimulus event on the body have distinct effects on cutaneous sensations. Experiment 5 replicated an enhancement of visual remapping of touch (VRT) when viewing fearful human faces being touched, and further demonstrated that VRT does not occur for observed touch on non-human faces, even fearful ones. This suggests that the facial expressions of non-human animals may not be simulated within the somatosensory system of the human observer in the same way that the facial expressions of other humans are. Finally, Experiment 6 examined the enfacement illusion, in which synchronous visuo-tactile inputs cause another’s face to be assimilated into the mental self-face representation. The strength of enfacement was not affected by the other’s facial expression, supporting an asymmetric relationship between processing of facial identity and facial expressions. Together, these studies indicate that multisensory representations of the body in the brain link low-level perceptual processes with the perception of emotional cues and body/face identity, and interact in complex ways depending upon contextual factors.
Core networks for visual-concrete and abstract thought content: a brain electric microstate analysis
Resumo:
Commonality of activation of spontaneously forming and stimulus-induced mental representations is an often made but rarely tested assumption in neuroscience. In a conjunction analysis of two earlier studies, brain electric activity during visual-concrete and abstract thoughts was studied. The conditions were: in study 1, spontaneous stimulus-independent thinking (post-hoc, visual imagery or abstract thought were identified); in study 2, reading of single nouns ranking high or low on a visual imagery scale. In both studies, subjects' tasks were similar: when prompted, they had to recall the last thought (study 1) or the last word (study 2). In both studies, subjects had no instruction to classify or to visually imagine their thoughts, and accordingly were not aware of the studies' aim. Brain electric data were analyzed into functional topographic brain images (using LORETA) of the last microstate before the prompt (study 1) and of the word-type discriminating event-related microstate after word onset (study 2). Conjunction analysis across the two studies yielded commonality of activation of core networks for abstract thought content in left anterior superior regions, and for visual-concrete thought content in right temporal-posterior inferior regions. The results suggest that two different core networks are automatedly activated when abstract or visual-concrete information, respectively, enters working memory, without a subject task or instruction about the two classes of information, and regardless of internal or external origin, and of input modality. These core machineries of working memory thus are invariant to source or modality of input when treating the two types of information.