984 resultados para Visual Analytics
Resumo:
After the recent prolonged drought conditions in many parts of Australia it is increasingly recognised that many groundwater systems are under stress. Although this is obvious for systems that are utilised for intensive irrigation many other groundwater systems are also impacted.Management strategies are highly variable to non-existent. Policy and regulation are also often inadequate, and are reactive or politically driven. In addition, there is a wide range of opinion by water users and other stakeholders as to what is “reasonable”management practice. These differences are often related to the “value”that is put on the groundwater resource. Opinions vary from “our right to free water”to an awareness that without effective management the resource will be degraded. There is also often misunderstanding of surface water-groundwater linkages, recharge processes, and baseflow to drainage systems.
Resumo:
The international focus on embracing daylighting for energy efficient lighting purposes and the corporate sector’s indulgence in the perception of workplace and work practice “transparency” has spurned an increase in highly glazed commercial buildings. This in turn has renewed issues of visual comfort and daylight-derived glare for occupants. In order to ascertain evidence, or predict risk, of these events; appraisals of these complex visual environments require detailed information on the luminances present in an occupant’s field of view. Conventional luminance meters are an expensive and time consuming method of achieving these results. To create a luminance map of an occupant’s visual field using such a meter requires too many individual measurements to be a practical measurement technique. The application of digital cameras as luminance measurement devices has solved this problem. With high dynamic range imaging, a single digital image can be created to provide luminances on a pixel-by-pixel level within the broad field of view afforded by a fish-eye lens: virtually replicating an occupant’s visual field and providing rapid yet detailed luminance information for the entire scene. With proper calibration, relatively inexpensive digital cameras can be successfully applied to the task of luminance measurements, placing them in the realm of tools that any lighting professional should own. This paper discusses how a digital camera can become a luminance measurement device and then presents an analysis of results obtained from post occupancy measurements from building assessments conducted by the Mobile Architecture Built Environment Laboratory (MABEL) project. This discussion leads to the important realisation that the placement of such tools in the hands of lighting professionals internationally will provide new opportunities for the lighting community in terms of research on critical issues in lighting such as daylight glare and visual quality and comfort.
Resumo:
This paper presents an implementation of an aircraft pose and motion estimator using visual systems as the principal sensor for controlling an Unmanned Aerial Vehicle (UAV) or as a redundant system for an Inertial Measure Unit (IMU) and gyros sensors. First, we explore the applications of the unified theory for central catadioptric cameras for attitude and heading estimation, explaining how the skyline is projected on the catadioptric image and how it is segmented and used to calculate the UAV’s attitude. Then we use appearance images to obtain a visual compass, and we calculate the relative rotation and heading of the aerial vehicle. Additionally, we show the use of a stereo system to calculate the aircraft height and to measure the UAV’s motion. Finally, we present a visual tracking system based on Fuzzy controllers working in both a UAV and a camera pan and tilt platform. Every part is tested using the UAV COLIBRI platform to validate the different approaches, which include comparison of the estimated data with the inertial values measured onboard the helicopter platform and the validation of the tracking schemes on real flights.
Resumo:
Purpose: To investigate the impact of glaucomatous visual impairment on postural sway and falls among older adults.Methods: The sample comprised 72 community-dwelling older adults with open-angle glaucoma, aged 74.0 5.8 years (range 62 to 90 years). Measures of visual function included binocular visual acuity (high-contrast), binocular contrast sensitivity (Pelli- Robson) and binocular visual fields (merged monocular HFA 24-2 SITA-Std). Postural stability was assessed under four conditions: eyes open and closed, on a firm and on a foam surface. Falls were monitored for six months with prospective falls diaries. Regression models, adjusting for age and gender, examined the association between vision measures and postural stability (linear regression) and the number of falls (negative binomial regression). Results: Greater visual field loss was significantly associated with poorer postural stability with eyes open, both on firm (r = 0.34, p < 0.01) and foam (r = 0.45, p < 0.001) surfaces. Eighteen (25 per cent) participants experienced at least one fall: 12 (17 per cent) participants fell only once and six (eight per cent) participants fell two or more times (up to five falls). Visual field loss was significantly associated with falling; the rate of falls doubled for every 10 dB reduction in field sensitivity (rate ratio = 1.08, 95% CI = 1.02–1.13). Importantly, in a model comprising upper and lower field sensitivity, only lower field loss was significantly associated with the number of falls (rate ratio = 1.17, 95% CI = 1.04–1.33). Conclusions: Binocular visual field loss was significantly associated with postural instability and falls among older adults with glaucoma. These findings provide valuable directions for developing falls risk assessment and falls prevention strategies for this population.
Resumo:
Purpose: There have been few studies of visual temporal processing of myopic eyes. This study investigated the visual performance of emmetropic and myopic eyes using a backward visual masking location task. Methods: Data were collected for 39 subjects (15 emmetropes, 12 stable myopes, 12 progressing myopes). In backward visual masking, a target’s visibility is reduced by a mask presented in quick succession ‘after’ the target. The target and mask stimuli were presented at different interstimulus intervals (from 12 to 300 ms). The task involved locating the position of a target letter with both a higher (seven per cent) and a lower (five per cent) contrast. Results: Emmetropic subjects had significantly better performance for the lower contrast location task than the myopes (F2,36 = 22.88; p < 0.001) but there was no difference between the progressing and stable myopic groups (p = 0.911). There were no differences between the groups for the higher contrast location task (F2,36 = 0.72, p = 0.495). No relationship between task performance and either the magnitude of myopia or axial length was found for either task. Conclusions: A location task deficit was observed in myopes only for lower contrast stimuli. Both emmetropic and myopic groups had better performance for the higher contrast task compared to the lower contrast task, with myopes showing considerable improvement. This suggests that five per cent contrast may be the contrast threshold required to bias the task towards the magnocellular system (where myopes have a temporal processing deficit). Alternatively, the task may be sensitive to the contrast sensitivity of the observer.
Resumo:
This study is the first to investigate the effect of prolonged reading on reading performance and visual functions in students with low vision. The study focuses on one of the most common modes of achieving adequate magnification for reading by students with low vision, their close reading distance (proximal or relative distance magnification). Close reading distances impose high demands on near visual functions, such as accommodation and convergence. Previous research on accommodation in children with low vision shows that their accommodative responses are reduced compared to normal vision. In addition, there is an increased lag of accommodation for higher stimulus levels as may occur at close reading distance. Reduced accommodative responses in low vision and higher lag of accommodation at close reading distances together could impact on reading performance of students with low vision especially during prolonged reading tasks. The presence of convergence anomalies could further affect reading performance. Therefore, the aims of the present study were 1) To investigate the effect of prolonged reading on reading performance in students with low vision 2) To investigate the effect of prolonged reading on visual functions in students with low vision. This study was conducted as cross-sectional research on 42 students with low vision and a comparison group of 20 students with normal vision, aged 7 to 20 years. The students with low vision had vision impairments arising from a range of causes and represented a typical group of students with low vision, with no significant developmental delays, attending school in Brisbane, Australia. All participants underwent a battery of clinical tests before and after a prolonged reading task. An initial reading-specific history and pre-task measurements that included Bailey-Lovie distance and near visual acuities, Pelli-Robson contrast sensitivity, ocular deviations, sensory fusion, ocular motility, near point of accommodation (pull-away method), accuracy of accommodation (Monocular Estimation Method (MEM)) retinoscopy and Near Point of Convergence (NPC) (push-up method) were recorded for all participants. Reading performance measures were Maximum Oral Reading Rates (MORR), Near Text Visual Acuity (NTVA) and acuity reserves using Bailey-Lovie text charts. Symptoms of visual fatigue were assessed using the Convergence Insufficiency Symptom Survey (CISS) for all participants. Pre-task measurements of reading performance and accuracy of accommodation and NPC were compared with post-task measurements, to test for any effects of prolonged reading. The prolonged reading task involved reading a storybook silently for at least 30 minutes. The task was controlled for print size, contrast, difficulty level and content of the reading material. Silent Reading Rate (SRR) was recorded every 2 minutes during prolonged reading. Symptom scores and visual fatigue scores were also obtained for all participants. A visual fatigue analogue scale (VAS) was used to assess visual fatigue during the task, once at the beginning, once at the middle and once at the end of the task. In addition to the subjective assessments of visual fatigue, tonic accommodation was monitored using a photorefractor (PlusoptiX CR03™) every 6 minutes during the task, as an objective assessment of visual fatigue. Reading measures were done at the habitual reading distance of students with low vision and at 25 cms for students with normal vision. The initial history showed that the students with low vision read for significantly shorter periods at home compared to the students with normal vision. The working distances of participants with low vision ranged from 3-25 cms and half of them were not using any optical devices for magnification. Nearly half of the participants with low vision were able to resolve 8-point print (1M) at 25 cms. Half of the participants in the low vision group had ocular deviations and suppression at near. Reading rates were significantly reduced in students with low vision compared to those of students with normal vision. In addition, there were a significantly larger number of participants in the low vision group who could not sustain the 30-minute task compared to the normal vision group. However, there were no significant changes in reading rates during or following prolonged reading in either the low vision or normal vision groups. Individual changes in reading rates were independent of their baseline reading rates, indicating that the changes in reading rates during prolonged reading cannot be predicted from a typical clinical assessment of reading using brief reading tasks. Contrary to previous reports the silent reading rates of the students with low vision were significantly lower than their oral reading rates, although oral and silent reading was assessed using different methods. Although the visual acuity, contrast sensitivity, near point of convergence and accuracy of accommodation were significantly poorer for the low vision group compared to those of the normal vision group, there were no significant changes in any of these visual functions following prolonged reading in either group. Interestingly, a few students with low vision (n =10) were found to be reading at a distance closer than their near point of accommodation. This suggests a decreased sensitivity to blur. Further evaluation revealed that the equivalent intrinsic refractive errors (an estimate of the spherical dioptirc defocus which would be expected to yield a patient’s visual acuity in normal subjects) were significantly larger for the low vision group compared to those of the normal vision group. As expected, accommodative responses were significantly reduced for the low vision group compared to the expected norms, which is consistent with their close reading distances, reduced visual acuity and contrast sensitivity. For those in the low vision group who had an accommodative error exceeding their equivalent intrinsic refractive errors, a significant decrease in MORR was found following prolonged reading. The silent reading rates however were not significantly affected by accommodative errors in the present study. Suppression also had a significant impact on the changes in reading rates during prolonged reading. The participants who did not have suppression at near showed significant decreases in silent reading rates during and following prolonged reading. This impact of binocular vision at near on prolonged reading was possibly due to the high demands on convergence. The significant predictors of MORR in the low vision group were age, NTVA, reading interest and reading comprehension, accounting for 61.7% of the variances in MORR. SRR was not significantly influenced by any factors, except for the duration of the reading task sustained; participants with higher reading rates were able to sustain a longer reading duration. In students with normal vision, age was the only predictor of MORR. Participants with low vision also reported significantly greater visual fatigue compared to the normal vision group. Measures of tonic accommodation however were little influenced by visual fatigue in the present study. Visual fatigue analogue scores were found to be significantly associated with reading rates in students with low vision and normal vision. However, the patterns of association between visual fatigue and reading rates were different for SRR and MORR. The participants with low vision with higher symptom scores had lower SRRs and participants with higher visual fatigue had lower MORRs. As hypothesized, visual functions such as accuracy of accommodation and convergence did have an impact on prolonged reading in students with low vision, for students whose accommodative errors were greater than their equivalent intrinsic refractive errors, and for those who did not suppress one eye. Those students with low vision who have accommodative errors higher than their equivalent intrinsic refractive errors might significantly benefit from reading glasses. Similarly, considering prisms or occlusion for those without suppression might reduce the convergence demands in these students while using their close reading distances. The impact of these prescriptions on reading rates, reading interest and visual fatigue is an area of promising future research. Most importantly, it is evident from the present study that a combination of factors such as accommodative errors, near point of convergence and suppression should be considered when prescribing reading devices for students with low vision. Considering these factors would also assist rehabilitation specialists in identifying those students who are likely to experience difficulty in prolonged reading, which is otherwise not reflected during typical clinical reading assessments.
Resumo:
Creating an acceptance of Visual Effects (VFX) as an effective non-fiction communication tool has the potential to significantly boost return on investment for filmmakers producing documentary. Obtaining this acceptance does not necessarily mean rethinking the way documentary is defined, however, the need to address negative perceptions presently dominant within the production industry does exist; specifically, the misguided judgement that use of sequences which include visual effects discredits a filmmaker's attempt to represent reality. After completing a documentary utilising a traditional model of production for methodology, the question of how to increase this film's marketability is then examined by testing the specific assertion that Visual Effects is capable of increasing the level of appeal inherent within the documentary genre. Whilst this area of research is speculative, qualifying Visual Effects as an acceptable communication tool in non-fiction narratives will allow the documentary sector to benefit from increased production capabilities.
Resumo:
This paper is concerned with choosing image features for image based visual servo control and how this choice influences the closed-loop dynamics of the system. In prior work, image features tend to be chosen on the basis of image processing simplicity and noise sensitivity. In this paper we show that the choice of feature directly influences the closed-loop dynamics in task-space. We focus on the depth axis control of a visual servo system and compare analytically various approaches that have been reported recently in the literature. The theoretical predictions are verified by experiment.
Resumo:
This paper considers the question of designing a fully image based visual servo control for a dynamic system. The work is motivated by the ongoing development of image based visual servo control of small aerial robotic vehicles. The observed targets considered are coloured blobs on a flat surface to which the normal direction is known. The theoretical framework is directly applicable to the case of markings on a horizontal floor or landing field. The image features used are a first order spherical moment for position and an image flow measurement for velocity. A fully non-linear adaptive control design is provided that ensures global stability of the closed-loop system. © 2005 IEEE.
Resumo:
Position estimation for planetary rovers has been typically limited to odometry based on proprioceptive measurements such as the integration of distance traveled and measurement of heading change. Here we present and compare two methods of online visual odometry suited for planetary rovers. Both methods use omnidirectional imagery to estimate motion of the rover. One method is based on robust estimation of optical flow and subsequent integration of the flow. The second method is a full structure-from-motion solution. To make the comparison meaningful we use the same set of raw corresponding visual features for each method. The dataset is an sequence of 2000 images taken during a field experiment in the Atacama desert, for which high resolution GPS ground truth is available.
Resumo:
Visual localization systems that are practical for autonomous vehicles in outdoor industrial applications must perform reliably in a wide range of conditions. Changing outdoor conditions cause difficulty by drastically altering the information available in the camera images. To confront the problem, we have developed a visual localization system that uses a surveyed three-dimensional (3D)-edge map of permanent structures in the environment. The map has the invariant properties necessary to achieve long-term robust operation. Previous 3D-edge map localization systems usually maintain a single pose hypothesis, making it difficult to initialize without an accurate prior pose estimate and also making them susceptible to misalignment with unmapped edges detected in the camera image. A multihypothesis particle filter is employed here to perform the initialization procedure with significant uncertainty in the vehicle's initial pose. A novel observation function for the particle filter is developed and evaluated against two existing functions. The new function is shown to further improve the abilities of the particle filter to converge given a very coarse estimate of the vehicle's initial pose. An intelligent exposure control algorithm is also developed that improves the quality of the pertinent information in the image. Results gathered over an entire sunny day and also during rainy weather illustrate that the localization system can operate in a wide range of outdoor conditions. The conclusion is that an invariant map, a robust multihypothesis localization algorithm, and an intelligent exposure control algorithm all combine to enable reliable visual localization through challenging outdoor conditions.
Resumo:
Recovering position from sensor information is an important problem in mobile robotics, known as localisation. Localisation requires a map or some other description of the environment to provide the robot with a context to interpret sensor data. The mobile robot system under discussion is using an artificial neural representation of position. Building a geometrical map of the environment with a single camera and artificial neural networks is difficult. Instead it would be simpler to learn position as a function of the visual input. Usually when learning images, an intermediate representation is employed. An appropriate starting point for biologically plausible image representation is the complex cells of the visual cortex, which have invariance properties that appear useful for localisation. The effectiveness for localisation of two different complex cell models are evaluated. Finally the ability of a simple neural network with single shot learning to recognise these representations and localise a robot is examined.
Resumo:
RatSLAM is a vision-based SLAM system based on extended models of the rodent hippocampus. RatSLAM creates environment representations that can be processed by the experience mapping algorithm to produce maps suitable for goal recall. The experience mapping algorithm also allows RatSLAM to map environments many times larger than could be achieved with a one to one correspondence between the map and environment, by reusing the RatSLAM maps to represent multiple sections of the environment. This paper describes experiments investigating the effects of the environment-representation size ratio and visual ambiguity on mapping and goal navigation performance. The experiments demonstrate that system performance is weakly dependent on either parameter in isolation, but strongly dependent on their joint values.
Resumo:
The Simultaneous Localisation And Mapping (SLAM) problem is one of the major challenges in mobile robotics. Probabilistic techniques using high-end range finding devices are well established in the field, but recent work has investigated vision-only approaches. We present an alternative approach to the leading existing techniques, which extracts approximate rotational and translation velocity information from a vehicle-mounted consumer camera, without tracking landmarks. When coupled with an existing SLAM system, the vision module is able to map a 45 metre long indoor loop and a 1.6 km long outdoor road loop, without any parameter or system adjustment between tests. The work serves as a promising pilot study into ground-based vision-only SLAM, with minimal geometric interpretation of the environment.