997 resultados para Visible lasers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new era of visible and sharable electricity information is emerging. Where eco-feedback is installed, households can now visualise many aspects of their energy consumption and share this information with others through Internet platforms such as social media. Despite providing users with many affordances, eco-feedback information can make public previously private actions from within the intimate setting of the family home. This paper represents a study focussing specifically on the privacy aspects of nascent ways for viewing and sharing this new stream of personal information. It explores the nuances of privacy related to eco-feedback both within and beyond the family home. While electricity consumption information may not be considered private itself, the household practices which eco-feedback systems makes visible may be private. We show that breaches of privacy can occur in unexpected ways and have the potential to cause distress. The paper concludes with some suggestions for how to realise the benefits of sharing energy consumption information whist effectively maintaining individuals’ conceptions of adequate privacy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study shows that there is positive regulatory effect of feedback from pupils to teachers on Assessment for Learning (AfL), classroom proactiveness, and on visible and progressive learning but not on behaviour. This research finding further articulates feedback from pupil to teacher as a paradigm shift from the classical paradigm of feedback from teacher to pupil. Here, the emphasis is geared towards pupils understanding of objectives built from previous knowledge. These are then feedback onto the teachers by the pupils in the form of discrete loops of cues and questions, where they are with their learning. This therefore enables them to move to the next level of understanding, and thus acquired independence, which in turn is reflected by their success in both formative and summative assessments. This study therefore shows that when feedback from pupil to teacher is used in combination with teacher to pupil feedback, AfL is ameliorated and hence, visible and accelerated learning occurs in a gender, nor subject non-dependent manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project was a step forward in developing new recyclable photocatalysts for chemical reactions. These new photocatalysts can facilitate reactions by using visible light under moderate reaction conditions which is suitable for a sustainable, green and eco-friendly modern chemical industry. The outcome of the study greatly extended our understanding in metal nanoparticle photocatalysis, which reveals new photocatalytic mechanisms for the controlled transformation of chemical reactions. The prospect of sunlight irradiation driving chemical reactions may provide opportunity for the organic synthesis via a more controlled, simplified, and greener process in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron species are one of the least toxic and least expensive substances that are photocatalytic in the visible region of the spectrum. Therefore, this article focuses on iron-based photocatalysts sensitive to visible light. Photo-Fenton reactions are considered with respect to those assisted by and involve the in situ production of H2O2. The possible role that photoactive iron species play by interacting with natural organic matter in water purification in the natural environment is considered. The review also considered photosensitization by phthalocyanines and the potential role that layered double hydroxides may have not only as catalyst supports but also as photosensitizers themselves. Finally, photocatalytic disinfection of water is discussed, and the desirability of standardized metrics and experimental conditions to assist in the comparative evaluation of photocatalysts is highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing worldwide terrorist attacks involving explosives presents a growing need for a rapid and ranged explosive detection method that can safely be deployed in the field. Stand-off Raman spectroscopy shows great promise; however, the radiant exposures of lasers required for adequate signal generation are often much greater than what is safe for the eye or the skin, restricting use of the technique to un-populated areas. Here, by determining the safe exposure levels for lasers typically used in Raman spectroscopy, optimal parameter values are identified, which produce the largest possible detection range using power densities that do not exceed the eye-safe limit. It is shown that safe ultraviolet pulse energies can be more than three orders of magnitude greater than equivalent safe visible pulse energies. Coupling this to the 16-fold increase in Raman signal obtained in the ultraviolet at 266 nm over that at 532 nm results in a 131 times larger detection range for the eye-safe 266-nm system over an equivalent eye-safe 532-nm laser system. For the Raman system described here, this translates to a maximum range of 42 m for detecting Teflon with a 266-nm laser emitting a 100-mm diameter beam of 23.5-mJ nanosecond pulses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rapid and catalyst-free cycloaddition system for visible-light-induced click chemistry is reported. A readily accessible photoreactive 2H-azirine moiety was designed to absorb light at wavelengths above 400 nm. Irradiation with low-energy light sources thus enables efficient small-molecule synthesis with a diverse range of multiple-bond-containing compounds. Moreover, in order to demonstrate the efficiency of the current approach, quantitative ligation of the photoactivatable chromophore with functional polymeric substrates was performed and full conversion with irradiation times of only 1 min at ambient conditions was achieved. The current report thus presents a highly efficient method for applications involving selective cycloaddition to electron-deficient multiple-bond-containing materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Palladium (Pd)-catalyzed cross-coupling reactions are among the most important methods in organic synthesis. We report the discovery of highly efficient and green photocatalytic processes by which cross-coupling reactions, including Sonogashira, Stille, Hiyama, Ullmann, and Buchwald–Hartwig reactions, can be driven with visible light at temperatures slightly above room temperature using alloy nanoparticles of gold and Pd on zirconium oxide, thus achieving high yields. The alloy nanoparticles absorb visible light, and their conduction electrons gain energy, which is available at the surface Pd sites. Results of the density functional theory calculations indicate that transfer of the light excited electrons from the nanoparticle surface to the reactant molecules adsorbed on the nanoparticle surface activates the reactants. When the light intensity was increased, a higher reaction rate was observed, because of the increased population of photoexcited electrons. The irradiation wavelength also has an important impact on the reaction rates. Ultraviolet irradiation can drive some reactions with the chlorobenzene substrate, while visible light irradiation failed to, and substantially improve the yields of the reactions with the bromobenzene substrate. The discovery reveals the possibility of using low-energy and -density sources such as sunlight to drive chemical transformations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pt/TiO2 sensitized by the cheap and organic ortho-dihydroxyl-9,10-anthraquinone dyes, such as Alizarin and Alizarin Red, achieved a TON of approximately 10 000 (TOF > 250 h−1 for the first ten hours) during >80 hours of visible light irradiation (>420 nm) for photocatalytic hydrogen evolution when triethanolamine was used as the sacrificial donor. The stability and activity enhancements can be attributed to the two highly serviceable redox reactions involving the 9,10-dicarbonyl and ortho-dihydroxyl groups of the anthracene ring, respectively

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper is a low-cost plasmonic metal. Efficient photocatalysts of copper nanoparticles on graphene support are successfully developed for controllably catalyzing the coupling reactions of aromatic nitro compounds to the corresponding azoxy or azo compounds under visible-light irradiation. The coupling of nitrobenzene produces azoxybenzene with a yield of 90 % at 60 °C, but azobenzene with a yield of 96 % at 90 °C. When irradiated with natural sunlight (mean light intensity of 0.044 W cm−2) at about 35 °C, 70 % of the nitrobenzene is converted and 57 % of the product is azobenzene. The electrons of the copper nanoparticles gain the energy of the incident light through a localized surface plasmon resonance effect and photoexcitation of the bound electrons. The excited energetic electrons at the surface of the copper nanoparticles facilitate the cleavage of the NO bonds in the aromatic nitro compounds. Hence, the catalyzed coupling reaction can proceed under light irradiation and moderate conditions. This study provides a green photocatalytic route for the production of azo compounds and highlights a potential application for graphene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visible light can drive esteri fi cation from aldehydes and alcohols using supported gold nanoparticles (Au/Al 2 O 3 ) as photo- catalysts at ambient temperatures. The gold nanoparticles (AuNPs) absorb visible light due to the localized surface plasmon resonance (LSPR) e ff ect, and the conduction electrons of the AuNPs gain the energy of the incident light. The energetic electrons, which concentrate at the NP surface, facilitate the activation of a range of aldehyde and alcohol substrates. The photocatalytic e ffi ciencies strongly depend on the Au loading, particle sizes of the AuNPs, irradiance, and wavelength of the light irradiation. Finally, a plausible reaction mechanism was proposed, and the Au/Al 2 O 3 catalysts can be reused several times without signi fi cantly losing activity. The knowledge acquired in this study may inspire further studies in new e ffi cient recyclable photocatalysts and a wide range of organic synthesis driven by sunlight.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We find that visible light irradiation of gold–palladium alloy nanoparticles supported on photocatalytically inert ZrO2 significantly enhances their catalytic activity for oxidant-free dehydrogenation of aromatic alcohols to the corresponding aldehydes at ambient temperatures. Dehydrogenation is also the dominant process in the selective oxidation of the alcohols to the corresponding aldehydes with molecular oxygen. The alloy nanoparticles strongly absorb light and exhibit superior catalytic and photocatalytic activity when compared to either pure palladium or gold nanoparticles. Analysis with a free electron gas model for the bulk alloy structure reveals that the alloying increases the surface charge heterogeneity on the alloy particle surface, which enhances the interaction between the alcohol molecules and the metal NPs. The increased surface charge heterogeneity of the alloy particles is confirmed with density function theory applied to small alloy clusters. Optimal catalytic activity was observed with a Au : Pd molar ratio of 1 : 186, which is in good agreement with the theoretical analysis. The rate-determining step of the dehydrogenation is hydrogen abstraction. The conduction electrons of the nanoparticles are photo-excited by the incident light giving them the necessary energy to be injected into the adsorbed alcohol molecules, promoting the hydrogen abstraction. The strong chemical adsorption of alcohol molecules facilitates this electron transfer. The results show that the alloy nanoparticles efficiently couple thermal and photonic energy sources to drive the dehydrogenation. These findings provide useful insight into the design of catalysts that utilize light for various organic syntheses at ambient temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in direct-use plasmonic-metal nanoparticles (NPs) as photocatalysts to drive organic synthesis reactions under visible-light irradiation have attracted great interest. Plasmonic-metal NPs are characterized by their strong interaction with visible light through excitation of the localized surface plasmon resonance (LSPR). Herein, we review recent developments in direct photocatalysis using plasmonic-metal NPs and their applications. We focus on the role played by the LSPR of the metal NPs in catalyzing organic transformations and, more broadly, the role that light irradiation plays in catalyzing the reactions. Through this, the reaction mechanisms that these light-excited energetic electrons promote will be highlighted. This review will be of particular interest to researchers who are designing and fabricating new plasmonic-metal NP photocatalysts by identifying important reaction mechanisms that occur through light irradiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report herein highly efficient photocatalysts comprising supported nanoparticles (NPs) of gold (Au) and palladium (Pd) alloys, which utilize visible light to catalyse the Suzuki cross-coupling reactions at ambient temperature. The alloy NPs strongly absorb visible light, energizing the conduction electrons of NPs which produce highly energetic electrons at the surface sites. The surface of the energized NPs activates the substrates and these particles exhibit good activity on a range of typical Suzuki reaction combinations. The photocatalytic efficiencies strongly depend on the Au:Pd ratio of the alloy NPs, irradiation light intensity and wavelength. The results show that the alloy nanoparticles efficiently couple thermal and photonic energy sources to drive Suzuki reactions. Results of the density functional theory (DFT) calculations indicate that transfer of the light-excited electrons from the nanoparticle surface to the reactant molecules adsorbed on the nanoparticle surface activates the reactants. The knowledge acquired in this study may inspire further studies of new efficient photocatalysts and a wide range of organic syntheses driven by sunlight.