898 resultados para Violent deaths
Resumo:
One of the most important questions regarding the progenitor systems of Type Ia supernovae (SNe Ia) is whether mergers of two white dwarfs can lead to explosions that reproduce observations of normal events. Here we present a fully three-dimensional simulation of a violent merger of two carbon-oxygen white dwarfs with masses of 0.9 M and 1.1 M combining very high resolution and exact initial conditions. A well-tested combination of codes is used to study the system. We start with the dynamical inspiral phase and follow the subsequent thermonuclear explosion under the plausible assumption that a detonation forms in the process of merging. We then perform detailed nucleosynthesis calculations and radiative transfer simulations to predict synthetic observables from the homologously expanding supernova ejecta. We find that synthetic color light curves of our merger, which produces about 0.62 M of Ni, show good agreement with those observed for normal SNe Ia in all wave bands from U to K. Line velocities in synthetic spectra around maximum light also agree well with observations. We conclude that violent mergers of massive white dwarfs can closely resemble normal SNe Ia. Therefore, depending on the number of such massive systems available these mergers may contribute at least a small fraction to the observed population of normal SNe Ia. © 2012 The American Astronomical Society. All rights reserved.
Resumo:
We investigate the brightness distribution expected for thermonuclear explosions that might result from the ignition of a detonation during the violent merger of white dwarf (WD) binaries. Violent WD mergers are a subclass of the canonical double degenerate scenario where two carbon-oxygen (CO) WDs merge when the larger WD fills its Roche lobe. Determining their brightness distribution is critical for evaluating whether such an explosion model could be responsible for a significant fraction of the observed population of Type Ia supernovae (SNe Ia). We argue that the brightness of an explosion realized via the violent merger model is mainly determined by the mass of Ni produced in the detonation of the primary COWD. To quantify this link, we use a set of sub-Chandrasekhar mass WD detonation models to derive a relationship between primary WD mass (m) and expected peak bolometric brightness (M). We use this m-M relationship to convert the masses of merging primary WDs from binary population models to a predicted distribution of explosion brightness. We also investigate the sensitivity of our results to assumptions about the conditions required to realize a detonation during violent mergers ofWDs. We find a striking similarity between the shape of our theoretical peak-magnitude distribution and that observed for SNe Ia: our model produces a M distribution that roughly covers the range and matches the shape of the one observed for SNe Ia. However, this agreement hinges on a particular phase of mass accretion during binary evolution: the primary WD gains ~0.15-0.35M? from a slightly evolved helium star companion. In our standard binary evolution model, such an accretion phase is predicted to occur for about 43 per cent of all binary systems that ultimately give rise to binary CO WD mergers. We also find that with high probability, violent WD mergers involving the most massive primaries (?1.3M?, which should produce bright SNe) have delay times ?500 Myr. © 2012 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.
Resumo:
Current systems for investigating child deaths in England, Wales and Northern Ireland have come under intense scrutiny in recent years and questions have been raised about the accuracy of child death investigations and resulting statistics. Research has highlighted the ways in which multidisciplinary input can contribute to investigative and review processes, a perspective which is further supported by recent UK policy developments. The experience of creating multidisciplinary child death review teams (CDRTs) in America highlights the potential benefits the introduction of a similar system might have. These benefits include improved multi-agency working and communication, more effective identification of suspicious cases, a decrease in inadequate death certification and a broader and more in-depth understanding of the causes of child deaths through the systematic collection and analysis of data. While a lack of funding, regional coordination and evaluation limit the impact of American CDRTs, the positive aspects of this process make it worthwhile, and timely, to consider how such a model might fit within our own context. Current policy developments such as the Home Office review of coroner services, the Children Bill and related Department for Education and Skills (DfES) work on developing screening groups demonstrate that strides have been made in respect of introducing a multidisciplinary process. Similarly, the development of local protocols for the investigation and/or review of child deaths in England, Wales and Northern Ireland highlights an increased focus on multidisciplinary processes. However, key issues from the American experience, such as the remit of CDRTs/screening panels, the need for national coordination and the importance of rigorous evaluation, can inform the development of a similar process in the UK. Copyright ©2005 John Wiley & Sons, Ltd.
Resumo:
Objective: To determine the pooled effect of exposure to one of 11 specialist palliative care teams providing services in patients’ homes.Design: Pooled analysis of a retrospective cohort study.Setting: Ontario, Canada.Participants: 3109 patients who received care from specialist palliative care teams in 2009-11 (exposed) matched by propensity score to 3109 patients who received usual care (unexposed).Intervention: The palliative care teams studied served different geographies and varied in team composition and size but had the same core team members and role: a core group of palliative care physicians, nurses, and family physicians who provide integrated palliative care to patients in their homes. The teams’ role was to manage symptoms, provide education and care, coordinate services, and be available without interruption regardless of time or day.Main outcome measures: Patients (a) being in hospital in the last two weeks of life; (b) having an emergency department visit in the last two weeks of life; or (c) dying in hospital.Results: In both exposed and unexposed groups, about 80% had cancer and 78% received end of life homecare services for the same average duration. Across all palliative care teams, 970 (31.2%) of the exposed group were in hospital and 896 (28.9%) had an emergency department visit in the last two weeks of life respectively, compared with 1219 (39.3%) and 1070 (34.5%) of the unexposed group (P<0.001). The pooled relative risks of being in hospital and having an emergency department visit in late life comparing exposed versus unexposed were 0.68 (95% confidence interval 0.61 to 0.76) and 0.77 (0.69 to 0.86) respectively. Fewer exposed than unexposed patients died in hospital (503 (16.2%) v 887 (28.6%), P<0.001), and the pooled relative risk of dying in hospital was 0.46 (0.40 to 0.52).Conclusions: Community based specialist palliative care teams, despite variation in team composition and geographies, were effective at reducing acute care use and hospital deaths at the end of life.
Resumo:
SN 2010lp is a subluminous Type Ia supernova (SN Ia) with slowly evolving lightcurves. Moreover, it is the only subluminous SN Ia observed so far that shows narrow emission lines of [O I] in late-time spectra, indicating unburned oxygen close to the center of the ejecta. Most explosion models for SNe Ia cannot explain the narrow [O I] emission. Here, we present hydrodynamic explosion and radiative transfer calculations showing that the violent merger of two carbon-oxygen white dwarfs of 0.9 and 0.76 M adequately reproduces the early-time observables of SN 2010lp. Moreover, our model predicts oxygen close to the center of the explosion ejecta, a pre-requisite for narrow [O I] emission in nebular spectra as observed in SN 2010lp. © 2013. The American Astronomical Society. All rights reserved.
Resumo:
Various scientific studies have explored the causes of violent behaviour from different perspectives, with psychological tests, in particular, applied to the analysis of crime factors. The relationship between bi-factors has also been extensively studied including the link between age and crime. In reality, many factors interact to contribute to criminal behaviour and as such there is a need to have a greater level of insight into its complex nature. In this article we analyse violent crime information systems containing data on psychological, environmental and genetic factors. Our approach combines elements of rough set theory with fuzzy logic and particle swarm optimisation to yield an algorithm and methodology that can effectively extract multi-knowledge from information systems. The experimental results show that our approach outperforms alternative genetic algorithm and dynamic reduct-based techniques for reduct identification and has the added advantage of identifying multiple reducts and hence multi-knowledge (rules). Identified rules are consistent with classical statistical analysis of violent crime data and also reveal new insights into the interaction between several factors. As such, the results are helpful in improving our understanding of the factors contributing to violent crime and in highlighting the existence of hidden and intangible relationships between crime factors.