951 resultados para Vessel loop
Resumo:
OBJECTIVE: The gluco-incretin hormones glucagon-like peptide (GLP)-1 and gastric inhibitory peptide (GIP) protect beta-cells against cytokine-induced apoptosis. Their action is initiated by binding to specific receptors that activate the cAMP signaling pathway, but the downstream events are not fully elucidated. Here we searched for mechanisms that may underlie this protective effect. RESEARCH DESIGN AND METHODS: We performed comparative transcriptomic analysis of islets from control and GipR(-/-);Glp-1-R(-/-) mice, which have increased sensitivity to cytokine-induced apoptosis. We found that IGF-1 receptor expression was markedly reduced in the mutant islets. Because the IGF-1 receptor signaling pathway is known for its antiapoptotic effect, we explored the relationship between gluco-incretin action, IGF-1 receptor expression and signaling, and apoptosis. RESULTS: We found that GLP-1 robustly stimulated IGF-1 receptor expression and Akt phosphorylation and that increased Akt phosphorylation was dependent on IGF-1 but not insulin receptor expression. We demonstrated that GLP-1-induced Akt phosphorylation required active secretion, indicating the presence of an autocrine activation mechanism; we showed that activation of IGF-1 receptor signaling was dependent on the secretion of IGF-2. We demonstrated, both in MIN6 cell line and primary beta-cells, that reducing IGF-1 receptor or IGF-2 expression or neutralizing secreted IGF-2 suppressed GLP-1-induced protection against apoptosis. CONCLUSIONS: An IGF-2/IGF-1 receptor autocrine loop operates in beta-cells. GLP-1 increases its activity by augmenting IGF-1 receptor expression and by stimulating secretion; this mechanism is required for GLP-1-induced protection against apoptosis. These findings may lead to novel ways of preventing beta-cell loss in the pathogenesis of diabetes.
Resumo:
Due to their relatively small size and central location within the thorax, improvement in signal-to-noise (SNR) is of paramount importance for in vivo coronary vessel wall imaging. Thus, with higher field strengths, coronary vessel wall imaging is likely to benefit from the expected "near linear" proportional gain in SNR. In this study, we demonstrate the feasibility of in vivo human high field (3 T) coronary vessel wall imaging using a free-breathing black blood fast gradient echo technique with respiratory navigator gating and real-time motion correction. With the broader availability of more SNR efficient fast spin echo and spiral techniques, further improvements can be expected.
Resumo:
BACKGROUND: Conventional x-ray angiography frequently underestimates the true burden of atherosclerosis. Although intravascular ultrasound allows for imaging of coronary plaque, this invasive technique is inappropriate for screening or serial examinations. We therefore sought to develop a noninvasive free-breathing MR technique for coronary vessel wall imaging. We hypothesized that such an approach would allow for in vivo imaging of coronary atherosclerosis. METHODS AND RESULTS: Ten subjects, including 5 healthy adult volunteers (aged 35+/-17 years, range 19 to 56 years) and 5 patients (aged 60+/-4 years, range 56 to 66 years) with x-ray-confirmed coronary artery disease (CAD), were studied with a T2-weighted, dual-inversion, fast spin-echo MR sequence. Multiple adjacent 5-mm cross-sectional images of the proximal right coronary artery were obtained with an in-plane resolution of 0.5x1.0 mm. A right hemidiaphragmatic navigator was used to facilitate free-breathing MR acquisition. Coronary vessel wall images were readily acquired in all subjects. Both coronary vessel wall thickness (1.5+/-0.2 versus 1.0+/-0.2 mm) and wall area (21.2+/-3.1 versus 13.7+/-4.2 mm(2)) were greater in patients with CAD (both P:<0.02 versus healthy adults). CONCLUSIONS: In vivo free-breathing coronary vessel wall and plaque imaging with MR has been successfully implemented in humans. Coronary wall thickness and wall area were significantly greater in patients with angiographic CAD. The presented technique may have potential applications in patients with known or suspected atherosclerotic CAD or for serial evaluation after pharmacological intervention.
Resumo:
BACKGROUND: Coronary in-stent restenosis cannot be directly assessed by magnetic resonance angiography (MRA) because of the local signal void of currently used stainless steel stents. The aim of this study was to investigate the potential of a new, dedicated, coronary MR imaging (MRI) stent for artifact-free, coronary MRA and in-stent lumen and vessel wall visualization. METHODS AND RESULTS: Fifteen prototype stents were deployed in coronary arteries of 15 healthy swine and investigated with a double-oblique, navigator-gated, free-breathing, T2-prepared, 3D cartesian gradient-echo sequence; a T2-prepared, 3D spiral gradient-echo sequence; and a T2-prepared, 3D steady-state, free-precession coronary MRA sequence. Furthermore, black-blood vessel wall imaging by a dual-inversion-recovery, turbo spin-echo sequence was performed. Artifacts of the stented vessel segment and signal intensities of the coronary vessel lumen inside and outside the stent were assessed. With all investigated sequences, the vessel lumen and wall could be visualized without artifacts, including the stented vessel segment. No signal intensity alterations inside the stent when compared with the vessel lumen outside the stent were found. CONCLUSIONS: The new, coronary MRI stent allows for completely artifact-free coronary MRA and vessel wall imaging.
Resumo:
Immune-endocrine interplay may play a major role in the pathogenesis of endometriosis. In the present study, we have investigated the interaction between macrophage migration inhibitory factor (MIF), a major pro-inflammatory and growth-promoting factor markedly expressed in active endometriotic lesions, and estradiol (E(2)) in ectopic endometrial cells. Our data showed a significant increase of MIF protein secretion and mRNA expression in endometriotic cells in response to E(2). MIF production was blocked by Fulvestrant, an estrogen receptor (ER) antagonist, and induced by ERα and ERβ selective agonists propyl-pyrazole-triol (PPT) and diarylpropionrile (DPN), respectively, thus demonstrating a specific receptor-mediated effect. Cell transfection with MIF promoter construct showed that E(2) significantly stimulates MIF promoter activity. Interestingly, our data further revealed that MIF reciprocally stimulates aromatase protein and mRNA expression via a posttranscriptional mRNA stabilization mechanism, that E(2) itself can upregulate aromatase expression, and that inhibition of endogenous MIF, using MIF specific siRNA, significantly inhibits E(2)-induced aromatase. Thus, the present study revealed the existence of a local positive feedback loop by which estrogen acts directly on ectopic endometrial cells to upregulate the expression of MIF, which, in turn, displays the capability of inducing the expression of aromatase, the key and rate-limiting enzyme for estrogen synthesis. Such interplay may have a considerable impact on the development of endometriosis.
Resumo:
How positive selection molds the T cell repertoire has been difficult to examine. In this study, we use TCR-beta-transgenic mice in which MHC shapes TCR-alpha use. Differential AV segment use is directly related to the constraints placed on the composition of the CDR3 loops. Where these constraints are low, efficient selection of alphabeta pairs follows. This mode of selection preferentially uses favored AV-AJ rearrangements and promotes diversity. Increased constraint on the alpha CDR3 loops leads to inefficient selection associated with uncommon recombination events and limited diversity. Further, the two modes of selection favor alternate sets of AJ segments. We discuss the relevance of these findings to the imprint of self-MHC restriction and peripheral T cell activation.
Resumo:
AIMS: Although the coronary artery vessel wall can be imaged non-invasively using magnetic resonance imaging (MRI), the in vivo reproducibility of wall thickness measures has not been previously investigated. Using a refined magnetization preparation scheme, we sought to assess the reproducibility of three-dimensional (3D) free-breathing black-blood coronary MRI in vivo. METHODS AND RESULTS: MRI vessel wall scans parallel to the right coronary artery (RCA) were obtained in 18 healthy individuals (age range 25-43, six women), with no known history of coronary artery disease, using a 3D dual-inversion navigator-gated black-blood spiral imaging sequence. Vessel wall scans were repeated 1 month later in eight subjects. The visible vessel wall segment and the wall thickness were quantitatively assessed using a semi-automatic tool and the intra-observer, inter-observer, and inter-scan reproducibilities were determined. The average imaged length of the RCA vessel wall was 44.5+/-7 mm. The average wall thickness was 1.6+/-0.2 mm. There was a highly significant intra-observer (r=0.97), inter-observer (r=0.94), and inter-scan (r=0.90) correlation for wall thickness (all P<0.001). There was also a significant agreement for intra-observer, inter-observer, and inter-scan measurements on Bland-Altman analysis. The intra-class correlation coefficients for intra-observer (r=0.97), inter-observer (r=0.92), and inter-scan (r=0.86) analyses were also excellent. CONCLUSION: The use of black-blood free-breathing 3D MRI in conjunction with semi-automated analysis software allows for reproducible measurements of right coronary arterial vessel-wall thickness. This technique may be well-suited for non-invasive longitudinal studies of coronary atherosclerosis.
Resumo:
The purpose of this study was to evaluate a free-breathing three-dimensional (3D) dual inversion-recovery (DIR) segmented k-space gradient-echo (turbo field echo [TFE]) imaging sequence at 3T for the quantification of aortic vessel wall dimensions. The effect of respiratory motion suppression on image quality was tested. Furthermore, the reproducibility of the aortic vessel wall measurements was investigated. Seven healthy subjects underwent 3D DIR TFE imaging of the aortic vessel wall with and without respiratory navigator. Subsequently, this sequence with respiratory navigator was performed twice in 10 healthy subjects to test its reproducibility. The signal-to-noise (SNR), contrast-to-noise ratio (CNR), vessel wall sharpness, and vessel wall volume (VWV) were assessed. Data were compared using the paired t-test, and the reproducibility of VWV measurements was evaluated using intraclass correlation coefficients (ICCs). SNR, CNR, and vessel wall sharpness were superior in scans performed with respiratory navigator compared to scans performed without. The ICCs concerning intraobserver, interobserver, and interscan reproducibility were excellent (0.99, 0.94, and 0.95, respectively). In conclusion, respiratory motion suppression substantially improves image quality of 3D DIR TFE imaging of the aortic vessel wall at 3T. Furthermore, this optimized technique with respiratory motion suppression enables assessment of aortic vessel wall dimensions with high reproducibility.
Resumo:
Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characterized by sensory and motor deficits in the absence of basic motor impairments. Despite the fundamental impact of sensory-motor integration mechanisms on daily life, the general principles of healthy and pathological anatomic-functional organization of sensory-motor integration remain to be clarified. Based on the available data from experimental psychology, neurophysiology, and neuroimaging, we propose a bio-computational model of sensory-motor integration: the Sensory-Motor Integrative Loop for Enacting (SMILE). Aiming at direct therapeutic implementations and with the final target of implementing novel intervention protocols for motor rehabilitation, our main goal is to provide the information necessary for further validating the SMILE model. By translating neuroscientific hypotheses into empirical investigations and clinically relevant questions, the prediction based on the SMILE model can be further extended to other pathological conditions characterized by impaired sensory-motor integration.
Resumo:
Report on a review of the Boiler and Pressure Vessel Safety Program and the Elevator and Escalator Safety Program administered by Iowa Workforce Development for the period July 1, 2008 through June 30, 2010
Resumo:
We describe the transcriptional potentiation in estrogen responsive transcription extracts of the Xenopus vitellogenin B1 gene promoter through the formation of a positioned nucleosome. Nuclease digestion and hydroxyl radical cleavage indicate that strong, DNA sequence-directed positioning of a nucleosome occurs between -300 and -140 relative to the start site of transcription. Deletion of this DNA sequence abolishes the potentiation of transcription due to nucleosome assembly. The wrapping of DNA around the histone core of the nucleosome positioned between -300 and -140 creates a static loop in which distal estrogen receptor binding sites are brought close to proximal promoter elements. This might facilitate interactions between the trans-acting factors themselves and/or RNA polymerase. Such a nucleosome provides an example of how chromatin structure might have a positive effect on the transcription process.
Resumo:
The matching coefficients for the four-quark operators in NRQCD (NRQED) are calculated at one loop using dimensional regularization for ultraviolet and infrared divergences. The matching for the electromagnetic current follows easily from our results. Both the unequal and equal mass cases are considered. The role played by the Coulomb infrared singularities is explained in detail.
Resumo:
Surgical tumor removal is often the treatment of choice in patients with head and neck squamous cell carcinoma. Depending on the extent of tumor resection, large defects are often produced in the individual head and neck regions, necessitating reconstructive surgery to avoid further functional impairment. In principle, this decision depends on the size and location of the defect, the aesthetic importance of the region and the functional significance of the area to be replaced. Reconstructive free flap procedures in patients who have undergone radiotherapy or exhibit vessel depletion in the neck due to multiple previous surgical interventions are particularly challenging. In order to ensure the best possible outcomes of surgical oncology therapies under difficult circumstances, this paper discusses the important factors and variables that can increase the success rate of microvascular grafts in irradiated or multiply resected patients.
Resumo:
Exchange-biased Ni/FeF2 films have been investigated using vector coil vibrating-sample magnetometry as a function of the cooling field strength HFC . In films with epitaxial FeF2 , a loop bifurcation develops with increasing HFC as it divides into two sub-loops shifted oppositely from zero field by the same amount. The positively biased sub-loop grows in size with HFC until only a single positively shifted loop is found. Throughout this process, the negative and positive (sub)loop shifts maintain the same discrete value. This is in sharp contrast to films with twinned FeF2 where the exchange field gradually changes with increasing HFC . The transverse magnetization shows clear correlations with the longitudinal subloops. Interestingly, over 85% of the Ni reverses its magnetization by rotation, either in one step or through two successive rotations. These results are due to the single-crystal nature of the antiferromagnetic FeF2 , which breaks down into two opposite regions of large domains.