997 resultados para Venous wall


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To determine the effect of various environmental conditions on the degree of hydration in hoof wall horn tissue from feral horses and investigate the effect of short-term foot soaking on moisture content in hoof wall and sole tissue in domestic horses. Animals: 40 feral horses from 3 environments (wet and boggy [n = 10], partially flooded [20], and constantly dry desert [10]) and 6 nonferal Quarter Horses. Procedures: The percentage of moisture content of hoof wall samples from feral horses was measured in vitro. In a separate evaluation, the percentage of moisture content of hoof wall and sole tissue was measured in the dry and soaked forefeet of Quarter Horses. Results: Mean ± SD percentage of moisture content was 29.6 ± 5.1%, 29.5 ± 5.8%, and 29.5 ± 2.9% for feral horses from the wet and boggy, partially flooded, and constantly dry desert environments, respectively. Moisture content did not differ among the 3 groups, nor did it differ between dry and soaked hoof wall samples from nonferal horses. However, soaking in water for 2 hours resulted in a significant increase in the percentage of moisture content of the sole. Conclusions and Clinical Relevance: Environmental conditions do not appear to affect moisture content in the hoof wall horn. Soaking horses' feet regularly in water would be unlikely to change the degree of hydration in the hoof wall horn but may further hydrate the sole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Australian dramatic literature of the 1950s and 1960s heralded a new wave in theatre and canonised a unique Australian identity on local and international stages. In previous decades, Australian theatre had been abound with the mythology of the wide brown land and the outback hero. This rural setting proved remote to audiences and sat uneasily within the conventions of the naturalist theatre. It was the suburban home that provided the back drop for this postwar evolution in Australian drama. While there were a number of factors that contributed to this watershed in Australian theatre, little has been written about how the spatial context may have influenced this movement. With the combined effects of postwar urbanization and shifting ideologies around domesticity, a new literary landscape had been created for playwrights to explore. Australian playwrights such as Dorothy Hewett, Ray Lawler and David Williamson transcended the outback hero by relocating him inside the postwar home. The Australian home of the 1960s slowly started subscribing to a new aesthetic of continuous living spaces and patios that extended from the exterior to the interior. These mass produced homes employed diluted spatial principles of houses designed by architects, Le Corbusier, Ludwig Mies Van der Rohe and Adolf Loos in the 1920s and 1930s. In writing about Adolf Loos’ architecture, Beatriz Colomina described the “house as a stage for the family theatre”. She also wrote that the inhabitants of Loos’ houses were “both actors and spectators of the family scene involved”. It has not been investigated as to whether this new capacity to spectate within the home was a catalyst for playwrights to reflect upon, and translate the domestic environment to the stage. Audiences were also accustomed to being spectators of domesticity and could relate to the representations of home in the theatre. Additionally, the domestic setting provided a space for gender discourse; a space in which contestations of masculine and feminine identities could be played out. This research investigates whether spectating within the domestic setting contributed to the revolution in Australian dramatic literature of the 1950s and 1960s. The concept of the spectator in domesticity is underpinned by the work of Beatriz Colomina and Mark Wigley. An understanding of how playwrights may have been influenced by spectatorship within the home is ascertained through interviews and biographical research. The paper explores playwrights’ own domestic experiences and those that have influenced the plays they wrote and endeavours to determine whether seeing into the home played a vital role in canonising the Australian identity on the stage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel lipped channels are commonly used in LSF wall construction as load bearing studs with plasterboards on both sides. Under fire conditions, cold-formed thin-walled steel sections heat up quickly resulting in fast reduction in their strength and stiffness. Usually the LSF wall panels are subjected to fire from one side which will cause thermal bowing, neutral axis shift and magnification effects due to the development of non-uniform temperature distributions across the stud. This will induce an additional bending moment in the stud and hence the studs in LSF wall panels should be designed as a beam column considering both the applied axial compression load and the additional bending moment. Traditionally the fire resistance rating of these wall panels is based on approximate prescriptive methods. Very often they are limited to standard wall configurations used by the industry. Therefore a detailed research study is needed to develop fire design rules to predict the failure load and hence the failure time of LSF wall panels subject to non-uniform temperature distributions. This paper presents the details of an investigation to develop suitable fire design rules for LSF wall studs under non-uniform elevated temperature distributions. Applications of the previously developed fire design rules based on AISI design manual and Eurocode 3 Parts 1.2 and 1.3 to LSF wall studs were investigated in detail and new simplified fire design rules based on AS/NZS 4600 and Eurocode 3 Part 1.3 were proposed in the current study with suitable allowances for the interaction effects of compression and bending actions. The accuracy of the proposed fire design rules was verified by using the results from full scale fire tests and extensive numerical studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light Gauge Steel Framing (LSF) walls made of cold-formed and thin-walled steel lipped channel studs with plasterboard linings on both sides are commonly used in commercial, industrial and residential buildings. However, there is limited data about their structural and thermal performance under fire conditions while past research showed contradicting results about the benefits of using cavity insulation. A new composite wall panel was recently proposed to improve the fire resistance rating of LSF walls, where an insulation layer was used externally between the plasterboards on both sides of the wall frame instead of using it in the cavity. In this research 11 full scale tests were conducted on conventional load bearing steel stud walls with and without cavity insulation, and the new composite panel system to study their thermal and structural performance under standard fire conditions. These tests showed that the use of cavity insulation led to inferior fire performance of walls, and provided supporting research data. They demonstrated that the use of insulation externally in a composite panel enhanced the thermal and structural performance of LSF walls and increased their fire resistance rating. This paper presents the details of the LSF wall tests and the thermal and structural performance data and fire resistance rating of load-bearing wall assemblies lined with varying plasterboard-insulation configurations under two different load ratios. Fire test results including the time–temperature and deflection profiles are presented along with the failure times and modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light Gauge Steel Framing (LSF) walls are made of cold-formed, thin-walled steel lipped channel studs with plasterboard linings on both sides. However, these thin-walled steel sections heat up quickly and lose their strength under fire conditions despite the protection provided by plasterboards. A new composite wall panel was recently proposed to improve the fire resistance rating of LSF walls, where an insulation layer was used externally between the plasterboards on both sides of the wall frame instead of using it in the cavity. A research study using both fire tests and numerical studies was undertaken to investigate the structural and thermal behaviour of load bearing LSF walls made of both conventional and the new composite panels under standard fire conditions and to determine their fire resistance rating. This paper presents the details of finite element models of LSF wall studs developed to simulate the structural performance of LSF wall panels under standard fire conditions. Finite element analyses were conducted under both steady and transient state conditions using the time-temperature profiles measured during the fire tests. The developed models were validated using the fire test results of 11 LSF wall panels with various plasterboard/insulation configurations and load ratios. They were able to predict the fire resistance rating within five minutes. The use of accurate numerical models allowed the inclusion of various complex structural and thermal effects such as local buckling, thermal bowing and neutral axis shift that occurred in thin-walled steel studs under non-uniform elevated temperature conditions. Finite element analyses also demonstrated the improvements offered by the new composite panel system over the conventional cavity insulated system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light gauge steel frame wall systems are commonly used in industrial and commercial buildings, and there is a need for simple fire design rules to predict their load capacities and fire resistance ratings. During fire events, the light gauge steel frame wall studs are subjected to non-uniform temperature distributions that cause thermal bowing, neutral axis shift and magnification effects and thus resulting in a combined axial compression and bending action on the studs. In this research, a series of full-scale fire tests was conducted first to evaluate the performance of light gauge steel frame wall systems with eight different wall configurations under standard fire conditions. Finite element models of light gauge steel frame walls were then developed, analysed under transient and steady-state conditions and validated using full-scale fire tests. Using the results from fire tests and finite element analyses, a detailed investigation was undertaken into the prediction of axial compression strength and failure times of light gauge steel frame wall studs in standard fires using the available fire design rules based on Australian, American and European standards. The results from both fire tests and finite element analyses were used to investigate the ability of these fire design rules to include the complex effects of non-uniform temperature distributions and their accuracy in predicting the axial compression strength of wall studs and the failure times. Suitable modifications were then proposed to the fire design rules. This article presents the details of this investigation on the fire design rules of light gauge steel frame walls and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditionally the fire resistance rating of LSF wall systems is based on approximate prescriptive methods developed using limited fire tests. Therefore a detailed research study into the performance of load bearing LSF wall systems under standard fire conditions was undertaken to develop improved fire design rules. It used the extensive fire performance results of eight different LSF wall systems from a series of full scale fire tests and numerical studies for this purpose. The use of previous fire design rules developed for LSF walls subjected to non-uniform elevated temperature distributions based on AISI design manual and Eurocode3 Parts 1.2 and 1.3 was investigated first. New simplified fire design rules based on AS/NZS 4600, North American Specification and Eurocode 3 Part 1.3 were then proposed in this study with suitable allowances for the interaction effects of compression and bending actions. The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated. A spread sheet based design tool was developed based on the new design rules to predict the failure load ratio versus time and temperature curves for varying LSF wall configurations. The accuracy of the proposed design rules was verified using the test and FEA results for different wall configurations, steel grades, thicknesses and load ratios. This paper presents the details and results of this study including the improved fire design rules for predicting the load capacity of LSF wall studs and the failure times of LSF walls under standard fire conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context Patients with venous leg ulcers experience multiple symptoms, including pain, depression, and discomfort from lower leg inflammation and wound exudate. Some of these symptoms impair wound healing and decrease quality of life (QOL). The presence of co-occurring symptoms may have a negative effect on these outcomes. The identification of symptom clusters could potentially lead to improvements in symptom management and QOL. Objectives To identify the prevalence and severity of common symptoms and the occurrence of symptom clusters in patients with venous leg ulcers. Methods For this secondary analysis, data on sociodemographic characteristics, medical history, venous history, ulcer and lower limb clinical characteristics, symptoms, treatments, healing, and QOL were analyzed from a sample of 318 patients with venous leg ulcers who were recruited from hospital outpatient and community nursing clinics for leg ulcers. Exploratory factor analysis was used to identify symptom clusters. Results Almost two-thirds (64%) of the patients experienced four or more concurrent symptoms. The most frequent symptoms were sleep disturbance (80%), pain (74%), and lower limb swelling (67%). Sixty percent of patients reported three or more symptoms at a moderate-to-severe level of intensity (e.g., 78% reported disturbed sleep frequently or always; the mean pain severity score was 49 of 100, SD 26.5). Exploratory factor analysis identified two symptom clusters: pain, depression, sleep disturbance, and fatigue; and swelling, inflammation, exudate, and fatigue. Conclusion Two symptom clusters were identified in this sample of patients with venous leg ulcers. Further research is needed to verify these symptom clusters and to evaluate their effect on patient outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research examined why university campus development has not fully embraced green technology despite common expectations. Semi-structured interviews and a Delphi Study explored universities’ organisational issues and delivery processes for projects with a sustainability focus. Critical organisational components and their internal relationships were studied, and critical factors for project success identified. A decision-making framework was developed to provide strategic directions for universities to optimise organisational environment and overcome barriers in order to better deliver sustainable projects on campuses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: US Centers for Disease Control guidelines recommend replacement of peripheral intravenous (IV) catheters no more frequently than every 72 to 96 hours. Routine replacement is thought to reduce the risk of phlebitis and bloodstream infection. Catheter insertion is an unpleasant experience for patients and replacement may be unnecessary if the catheter remains functional and there are no signs of inflammation. Costs associated with routine replacement may be considerable. This is an update of a review first published in 2010. OBJECTIVES: To assess the effects of removing peripheral IV catheters when clinically indicated compared with removing and re-siting the catheter routinely. SEARCH METHODS: For this update the Cochrane Peripheral Vascular Diseases (PVD) Group Trials Search Co-ordinator searched the PVD Specialised Register (December 2012) and CENTRAL (2012, Issue 11). We also searched MEDLINE (last searched October 2012) and clinical trials registries. SELECTION CRITERIA: Randomised controlled trials that compared routine removal of peripheral IV catheters with removal only when clinically indicated in hospitalised or community dwelling patients receiving continuous or intermittent infusions. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trial quality and extracted data. MAIN RESULTS: Seven trials with a total of 4895 patients were included in the review. Catheter-related bloodstream infection (CRBSI) was assessed in five trials (4806 patients). There was no significant between group difference in the CRBSI rate (clinically-indicated 1/2365; routine change 2/2441). The risk ratio (RR) was 0.61 but the confidence interval (CI) was wide, creating uncertainty around the estimate (95% CI 0.08 to 4.68; P = 0.64). No difference in phlebitis rates was found whether catheters were changed according to clinical indications or routinely (clinically-indicated 186/2365; 3-day change 166/2441; RR 1.14, 95% CI 0.93 to 1.39). This result was unaffected by whether infusion through the catheter was continuous or intermittent. We also analysed the data by number of device days and again no differences between groups were observed (RR 1.03, 95% CI 0.84 to 1.27; P = 0.75). One trial assessed all-cause bloodstream infection. There was no difference in this outcome between the two groups (clinically-indicated 4/1593 (0.02%); routine change 9/1690 (0.05%); P = 0.21). Cannulation costs were lower by approximately AUD 7.00 in the clinically-indicated group (mean difference (MD) -6.96, 95% CI -9.05 to -4.86; P ≤ 0.00001). AUTHORS' CONCLUSIONS: The review found no evidence to support changing catheters every 72 to 96 hours. Consequently, healthcare organisations may consider changing to a policy whereby catheters are changed only if clinically indicated. This would provide significant cost savings and would spare patients the unnecessary pain of routine re-sites in the absence of clinical indications. To minimise peripheral catheter-related complications, the insertion site should be inspected at each shift change and the catheter removed if signs of inflammation, infiltration, or blockage are present. OBJECTIVES: To assess the effects of removing peripheral IV catheters when clinically indicated compared with removing and re-siting the catheter routinely. SEARCH METHODS: For this update the Cochrane Peripheral Vascular Diseases (PVD) Group Trials Search Co-ordinator searched the PVD Specialised Register (December 2012) and CENTRAL (2012, Issue 11). We also searched MEDLINE (last searched October 2012) and clinical trials registries. SELECTION CRITERIA: Randomised controlled trials that compared routine removal of peripheral IV catheters with removal only when clinically indicated in hospitalised or community dwelling patients receiving continuous or intermittent infusions. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trial quality and extracted data. MAIN RESULTS: Seven trials with a total of 4895 patients were included in the review. Catheter-related bloodstream infection (CRBSI) was assessed in five trials (4806 patients). There was no significant between group difference in the CRBSI rate (clinically-indicated 1/2365; routine change 2/2441). The risk ratio (RR) was 0.61 but the confidence interval (CI) was wide, creating uncertainty around the estimate (95% CI 0.08 to 4.68; P = 0.64). No difference in phlebitis rates was found whether catheters were changed according to clinical indications or routinely (clinically-indicated 186/2365; 3-day change 166/2441; RR 1.14, 95% CI 0.93 to 1.39). This result was unaffected by whether infusion through the catheter was continuous or intermittent. We also analysed the data by number of device days and again no differences between groups were observed (RR 1.03, 95% CI 0.84 to 1.27; P = 0.75). One trial assessed all-cause bloodstream infection. There was no difference in this outcome between the two groups (clinically-indicated 4/1593 (0.02%); routine change 9/1690 (0.05%); P = 0.21). Cannulation costs were lower by approximately AUD 7.00 in the clinically-indicated group (mean difference (MD) -6.96, 95% CI -9.05 to -4.86; P ≤ 0.00001). AUTHORS' CONCLUSIONS: The review found no evidence to support changing catheters every 72 to 96 hours. Consequently, healthcare organisations may consider changing to a policy whereby catheters are changed only if clinically indicated. This would provide significant cost savings and would spare patients the unnecessary pain of routine re-sites in the absence of clinical indications. To minimise peripheral catheter-related complications, the insertion site should be inspected at each shift change and the catheter removed if signs of inflammation, infiltration, or blockage are present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A controlled layer of multi-wall carbon nanotubes (MWCNT) was grown directly on top of fluorine-doped tin oxide (FTO) glass electrodes as a surface modifier for improving the performance of polymer solar cells. By using low-temperature chemical vapor deposition with short synthesis times, very short MWCNTs were grown, these uniformly decorating the FTO surface. The chemical vapor deposition parameters were carefully refined to balance the tube size and density, while minimizing the decrease in conductivity and light harvesting of the electrode. As created FTO/CNT electrodes were applied to bulk-heterojunction polymer solar cells, both in direct and inverted architecture. Thanks to the inclusion of MWCNT and the consequent nano-structuring of the electrode surface, we observe an increase in external quantum efficiency in the wavelength range from 550 to 650 nm. Overall, polymer solar cells realized with these FTO/CNT electrodes attain power conversion efficiency higher than 2%, outclassing reference cells based on standard FTO electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When steel roof and wall cladding systems are subjected to wind uplift/suction forces, local pull-through/dimpling failures or pull-out failures occur prematurely at their screwed connections. During extreme wind events such as storms and hurricanes, these localized failures then lead to severe damage to buildings and their contents. An investigation was therefore carried out to study the failure that occurs when the screw fastener pulls out of the steel battens, purlins, or girts. Both two-span cladding tests and small-scale tests were conducted using a range of commonly used screw fasteners and steel battens, purlins, and girts. Experimental results showed that the current design formula may not be suitable unless a reduced capacity factor of 0.4 is used. Therefore, an improved design formula has been developed for pull-out failures in steel cladding systems. The formula takes into account thickness and ultimate tensile strength of steel, along with thread diameter and the pitch of screw fasteners, in order to model the pull-out behavior more accurately. This paper presents the details of this experimental investigation and its results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When crest-fixed thin steel roof cladding systems are subjected to wind uplift, local pull-through or pull-out failures occur prematurely at their screwed connections. During high wind events such as storms and cyclones these localised failures then lead to severe damage to buildings and their contents. In recent times, the use of thin steel battens/purlins has increased considerably. This has made the pull-out failures more critical in the design of steel cladding systems. Recent research has developed a design formula for the static pull-out strength of steel cladding systems. However, the effects of fluctuating wind uplift loading that occurs during high wind events are not known. Therefore a series of constant amplitude cyclic tests has been undertaken on connections between steel battens made of different thicknesses and steel grades, and screw fasteners with varying diameter and pitch. This paper presents the details of these cyclic tests and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hong Kong is a densely populated city suffering badly from the urban heat island effect. Green wall offers a means of ameliorating the situation but there are doubts over its suitability in Hong Kong’s unique environment. In this paper, we look at the potential for green walls in Hong Kong first by summarising some of the Chinese green walling systems and associated vegetation in use, then by an introduction to three existing green walls in Hong Kong, and finally through a small experiment aimed at identifying the likely main effects of green walled housing. The results indicate that green walling in Hong Kong is likely to provide enhanced internal house environment in terms of warm weather temperature reduction, stabilisation and damping, with direct energy savings in air-conditioning and indirect district benefits of reduced heat island effect and carbon emissions. The green walling insulation properties also suggest the possibility of warmer homes in winter and/or energy savings in mechanical heating provision.