991 resultados para Velocity Measurements


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The European Space Agency's Gaia mission will create the largest and most precise three dimensional chart of our galaxy (the Milky Way), by providing unprecedented position, parallax, proper motion, and radial velocity measurements for about one billion stars. The resulting catalogue will be made available to the scientific community and will be analyzed in many different ways, including the production of a variety of statistics. The latter will often entail the generation of multidimensional histograms and hypercubes as part of the precomputed statistics for each data release, or for scientific analysis involving either the final data products or the raw data coming from the satellite instruments. In this paper we present and analyze a generic framework that allows the hypercube generation to be easily done within a MapReduce infrastructure, providing all the advantages of the new Big Data analysis paradigmbut without dealing with any specific interface to the lower level distributed system implementation (Hadoop). Furthermore, we show how executing the framework for different data storage model configurations (i.e. row or column oriented) and compression techniques can considerably improve the response time of this type of workload for the currently available simulated data of the mission. In addition, we put forward the advantages and shortcomings of the deployment of the framework on a public cloud provider, benchmark against other popular solutions available (that are not always the best for such ad-hoc applications), and describe some user experiences with the framework, which was employed for a number of dedicated astronomical data analysis techniques workshops.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Kuplakolonnireaktoreiden CFD-mallinnus on talla hetkella voimakkaasti kehittyva tutkimusalue. Kaksifaasivirtauksen luotettava simulointi ja mallintaminen on haastavaa kuplakolonnireaktorissa tapahtuvien ilmioiden monimutkaisuuden vuoksi. Reaktorin kayttaytymiseen vaikuttavat tekijat, kuten kolonnin hydrodynamiikka ja aineensiirto, tulee tuntea hyvin ennen mallien tekoa. Tassa tyossa on kokeellisesti tutkittu erilaisten mittausmenetelmien soveltuvuutta kuplakolonnin hydrodynamiikan tutkimiseen. Mittausmenetelmissa on keskitytty erityisesti CFD-mallien vaatimiin paikallisiin mittauksiin. Lisaksi tyossa on arvioitu mittausmenetelmien soveltuvuutta j a luotettavuutta CFD-mallien validointiin. Tyon kirjallisuusosassa on perehdytty kuplakolonnireaktorin hydrodynaamiseen kayttaytymiseen ja siihen vaikuttaviin tekijoihin. Naita ovat mm. reaktorityypit, kaasun dispergointi, virtaustyypit ja -alueet, kaasun tilavuusosuus, kaasukuplan koko ja kuplan nousunopeus. Mittauksia tehtiin kahdessa erikokoisessa kuplakolonnissa, joista pienemman halkaisija oli 0,078 m ja suuremman 0,182 m. Molempien kolonnien nestepinnan korkeus oli 4,62 m. Mittaukset tehtiin vesijohtovedella ja epaorgaanisella prosessiliuoksella. Hydrodynaamisista ominaisuuksista mitattiin kaasun tilavuusosuus, kaasukuplan koko seka kaasukuplan nousunopeus. Kaasun tilavuusosuusmittaukset tehtiin paaasiassa paine-eromittauksella ja joissakin tapauksissa pinnanmittausmenetelmalla. Kuplakoko- ja kuplan nousunopeusmittaukset tehtiin suumopeusvideokameralla ja laser Doppler-anemometrilla. Mittauksissa kaytettiin kahdeksaa erilaista kaasunjakolaitetta, joilla selvitettiin kaasunjakolaitteen ominaisuuksien vaikutusta kolonnin hydrodynamiikkaan. Tuloksista havaittiin, etta nestefaasin ominaisuuksilla oli suuri vaikutus kolonnin hydrodynaamiseen kayttaytymiseen. En kaasunjakolaitteilla vesijohtovedella mitatut hydrodynaamiset ominaisuudet eivat poikenneet paljoa toisistaan, kun taas prosessiliuoksella kaasunjakolaitteiden valille saatiin huomattavat erot. Mittausmenetelmista laser Doppler-anemometri ei kaytettavissa olleella optiikalla soveltunut kaasukuplien mittaamiseen. Kuplat olivat menetelmalle liian suuria. Suumopeusvideokamerallaja paine-eromittauksella paastiin hyviin tuloksiin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diplomityössä tutkittiin höyryturbiinin ulosvirtauskanavistojen kokeellisia tutkimusmenetelmiä ja suoritettiin käytännön mittauksia Fortum Oyj:n Loviisan ydinvoimalaitoksen höyryturbiinien huuvan pienoismallilla. Kirjallisuusselvityksen perusteella todettiin, että pienoismallitutkimuksella on ollut keskeinen asema ulosvirtauskanavistojen suunnittelussa. Kokeellisten menetelmien perusongelmana on höyryturbiinin ulosvirtausolosuhteiden jäljitteleminen. Käytetyt mittausmenetelmät perustuvat pääosin tavanomaisiin paine- ja nopeusmittauksiin. Lisäainepartikkeleihin ja laser-valaisuun perustuva PIV (particle image velocimetry) todettiin lupaavaksi menetelmäksi ulosvirtauskanavistojen tutkimuksen saralla. Työn käytännön osuudessa tehtiin mittauksia mittasuhteessa 1:8 rakennetulle höyryturbiinin huuvan pienoismallille. Mittauksilla tutkittiin virtausta mallin sisääntulo- ja ulostulotasoissa. Lisäksi mitattiin staattisen paineen jakauma huuvan sisällä. Kokonaispainetta mittaava kiel-putki todettiin käytännölliseksi työkaluksi huuvan virtauskentän tutkimuksessa. Tuloksista käy hyvin ilmi huuvan ulostuloon syntyvien pyörteiden muodostuminen ja ulostulon epätasainen nopeusjakauma. Staattinen paine huuvan sisällä havaittiin epätasaisesti jakautuneeksi. Ulostulotason ja staattisen paineen mittauksilla saadut tulokset sopivat hyvin yhteen kirjallisuudesta löytyvien tutkimustulosten kanssa ja tukevat Loviisan ulosvirtauskanavistosta aiemmin tehtyjä CFD-simulointeja.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The streams flowing through the Niagara Escarpment are paved by coarse carbonate and sandstone sediments which have originated from the escarpment units and can be traced downstream from their source. Fifty-nine sediment samples were taken from five streams, over distances of 3,000 to 10,000 feet (915 to 3050 m), to determine downstream changes in sediment composition, textural characteristics and sorting. In addition, fluorometric velocity measurements were used in conjunction with measured -discharge and flow records to estimate the frequency of sediment movement. The frequency of sediments of a given lithology changes downstream in direct response to the outcrop position of the formations in the channels. Clasts derived from a single stratigraphic unit usually reach a maximum frequency within the first 1,000 feet (305 m) of transport. Sediments derived from formations at the top of waterfalls reach a modal frequency farther downstream than material originating at the base of waterfalls. Downstream variations in sediment size over the lengths of the study reaches reflect the changes in channel morphology and lithologic composition of the sediment samples. Linear regression analyses indicate that there is a decrease in the axial lengths between the intial and final samples and that the long axis decreases in length more rapidly than the intermediate, while the short axis remains almost constant. Carbonate sediments from coarse-grained, fossiliferous units - iii - are more variable in size than fine-grained dolostones and sandstones. The average sphericity for carbonates and sandstones increases from 0.65 to 0.67, while maximum projection sphericity remains nearly constant with an average value of 0.52. Pebble roundness increases more rapidly than either of the sphericity parameters and the sediments change from subrounded to rounded. The Hjulstrom diagram indicates that the velocities required to initiate transport of sediments with an average intermediate diameter of 10 cm range from 200 cm/s to 300 cm/s (6.6 ft./sec. to 9.8 ft./sec.). From the modal velocitydischarge relations, the flows corresponding to these velocities are greater than 3,500 cfs (99 m3s). These discharges occur less than 0.01 p~r cent (0.4 days) of the time and correspond to a discharge occurring during the spring flood.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les diagnostics cliniques des maladies cardio-vasculaires sont principalement effectués à l’aide d’échographies Doppler-couleur malgré ses restrictions : mesures de vélocité dépendantes de l’angle ainsi qu’une fréquence d’images plus faible à cause de focalisation traditionnelle. Deux études, utilisant des approches différentes, adressent ces restrictions en utilisant l’imagerie à onde-plane, post-traitée avec des méthodes de délai et sommation et d’autocorrélation. L’objectif de la présente étude est de ré-implémenté ces méthodes pour analyser certains paramètres qui affecte la précision des estimations de la vélocité du flux sanguin en utilisant le Doppler vectoriel 2D. À l’aide d’expériences in vitro sur des flux paraboliques stationnaires effectuées avec un système Verasonics, l’impact de quatre paramètres sur la précision de la cartographie a été évalué : le nombre d’inclinaisons par orientation, la longueur d’ensemble pour les images à orientation unique, le nombre de cycles par pulsation, ainsi que l’angle de l’orientation pour différents flux. Les valeurs optimales sont de 7 inclinaisons par orientation, une orientation de ±15° avec 6 cycles par pulsation. La précision de la reconstruction est comparable à l’échographie Doppler conventionnelle, tout en ayant une fréquence d’image 10 à 20 fois supérieure, permettant une meilleure caractérisation des transitions rapides qui requiert une résolution temporelle élevée.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ultrasonic is a good tool to investigate the elastic properties of crystals. It enables one to determine all the elastic constants, Poisson’s ratios, volume compressibility and bulk modulus of crystals from velocity measurements. It also enables one to demonstrate the anisotropy of elastic properties by plotting sections of the surfaces of phase velocity, slowness, group velocity, Young’s modulus and linear compressibility along the a-b, b-c and a-c planes. They also help one to understand more about phonon amplification and help to interpret various phenomena associated with ultrasonic wave propagation, thermal conductivity, phonon transport etc. Study of nonlinear optical crystals is very important from an application point of view. Hundreds of new NLO materials are synthesized to meet the requirements for various applications. Inorganic, organic and organometallic or semiorganic classes of compounds have been studied for several reasons. Semiorganic compounds have some advantages over their inorganic and inorganic counterparts with regard to their mechanical properties. High damage resistance, high melting point, good transparency and non-hygroscopy are some of the basic requirements for a material to be suitable for device fabrication. New NLO materials are being synthesized and investigation of the mechanical and elastic properties of these crystals is very important to test the suitability of these materials for technological applications

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Certain organic crystals are found to possess high non- linear optical coefficients,often one to two orders of magnitude higher than those of the well known inorganic non-linear optical materials.Benzoyl glycine is one such crystal whose optical second-harmonic generation efficiency is much higher than that of potassium dihydrogen phosphate. Single crystals of benzoyl glycine are grown by solvent evaporation technique using N,N-dimethyl formamide as the solvent.All the nine second-order elastic stiffness constants of this orthorhombic crystal are determined from ultrasonic wave velocity measurements employing the pulse echo overlap technique.The anisotropy of elastic wave propagation in this crystal is demonstrated by plotting the phase velocity, slowness,Young's modulus and linear compressibility surfaces along symmetry planes.The volume compressibility, bulk modulus and relevant Poisson's ratios are also determined. Variation of the diagonal elastic stiffness constants with temperature over a limited range are measured and reported.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbonate rocks are important hydrocarbon reservoir rocks with complex textures and petrophysical properties (porosity and permeability) mainly resulting from various diagenetic processes (compaction, dissolution, precipitation, cementation, etc.). These complexities make prediction of reservoir characteristics (e.g. porosity and permeability) from their seismic properties very difficult. To explore the relationship between the seismic, petrophysical and geological properties, ultrasonic compressional- and shear-wave velocity measurements were made under a simulated in situ condition of pressure (50 MPa hydrostatic effective pressure) at frequencies of approximately 0.85 MHz and 0.7 MHz, respectively, using a pulse-echo method. The measurements were made both in vacuum-dry and fully saturated conditions in oolitic limestones of the Great Oolite Formation of southern England. Some of the rocks were fully saturated with oil. The acoustic measurements were supplemented by porosity and permeability measurements, petrological and pore geometry studies of resin-impregnated polished thin sections, X-ray diffraction analyses and scanning electron microscope studies to investigate submicroscopic textures and micropores. It is shown that the compressional- and shear-wave velocities (V-p and V-s, respectively) decrease with increasing porosity and that V-p decreases approximately twice as fast as V-s. The systematic differences in pore structures (e.g. the aspect ratio) of the limestones produce large residuals in the velocity versus porosity relationship. It is demonstrated that the velocity versus porosity relationship can be improved by removing the pore-structure-dependent variations from the residuals. The introduction of water into the pore space decreases the shear moduli of the rocks by about 2 GPa, suggesting that there exists a fluid/matrix interaction at grain contacts, which reduces the rigidity. The predicted Biot-Gassmann velocity values are greater than the measured velocity values due to the rock-fluid interaction. This is not accounted for in the Biot-Gassmann velocity models and velocity dispersion due to a local flow mechanism. The velocities predicted by the Raymer and time-average relationships overestimated the measured velocities even more than the Biot model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present work we use a Tsallis maximum entropy distribution law to fit the observations of projected rotational velocity measurements of stars in the Pleiades open cluster. This new distribution funtion which generalizes the Ma.xwel1-Boltzmann one is derived from the non-extensivity of the Boltzmann-Gibbs entropy. We also present a oomparison between results from the generalized distribution and the Ma.xwellia.n law, and show that the generalized distribution fits more closely the observational data. In addition, we present a oomparison between the q values of the generalized distribution determined for the V sin i distribution of the main sequence stars (Pleiades) and ones found for the observed distribution of evolved stars (subgiants). We then observe a correlation between the q values and the star evolution stage for a certain range of stel1ar mass

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neste trabalho compilamos informações sobre um grande número de medidas de velocidade de grupo para ondas Rayleigh do modo fundamental, com período até 100 segundos. Tais dados consistiram de informações retiradas da literatura geofísica e cobriram toda a Terra. Parte dos dados foi organizada em trabalhos anteriores e uma segunda parte foi apresentada aqui de forma inédita. Para a América do Sul, selecionamos os principais conjuntos de dados de tais ondas e elaboramos diversos perfis onde a distribuição de velocidade de ondas cisalhantes foi obtida a partir da inversão das curvas de dispersão de velocidade de grupo. Tais perfis serviram para termos uma ideia inicial da estrutura interna da Terra em nosso continente. Com o conjunto global de dados de velocidade de grupo foi possível obtermos os mapas de distribuição lateral de valores de velocidade para cada período referencial entre 20 e 100 segundos. Tais mapas foram produzidos da mesma forma que os mapas de velocidade de fase de ROSA (1986), onde a amostragem for para realizada para blocas medindo 10x10 graus, englobando toda a Terra, em projeção mercator. O valor de velocidade de grupo em cada bloco, para cada período, foi obtido a partir da inversão estocástica dos dados de anomalia de velocidade em relação aos modelos regionalizados de JORDAN (1981) com os valores de velocidade de grupo de ROSA et al. (1992). Os mapas de velocidade de grupo obtidos aqui foram então empregados, na América do Sul, com os valores de velocidade de fase dos mapas obtidos por ROSA (1986). Assim, foi possível determinarmos, em profundidade, os mapas de variação de velocidade de onda cisalhante e os mapas de distribuição de valores de densidade. Com isto, pudemos construir o primeiro mapa de profundidade do Moho (todo do Manto Superior) da América do Sul.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Context. Observations of transiting extrasolar planets are of key importance to our understanding of planets because their mass, radius, and mass density can be determined. These measurements indicate that planets of similar mass can have very different radii. For low-density planets, it is generally assumed that they are inflated owing to their proximity to the host-star. To determine the causes of this inflation, it is necessary to obtain a statistically significant sample of planets with precisely measured masses and radii. Aims. The CoRoT space mission allows us to achieve a very high photometric accuracy. By combining CoRoT data with high-precision radial velocity measurements, we derive precise planetary radii and masses. We report the discovery of CoRoT-19b, a gas-giant planet transiting an old, inactive F9V-type star with a period of four days. Methods. After excluding alternative physical configurations mimicking a planetary transit signal, we determine the radius and mass of the planet by combining CoRoT photometry with high-resolution spectroscopy obtained with the echelle spectrographs SOPHIE, HARPS, FIES, and SANDIFORD. To improve the precision of its ephemeris and the epoch, we observed additional transits with the TRAPPIST and Euler telescopes. Using HARPS spectra obtained during the transit, we then determine the projected angle between the spin of the star and the orbit of the planet. Results. We find that the host star of CoRoT-19b is an inactive F9V-type star close to the end of its main-sequence life. The host star has a mass M-* = 1.21 +/- 0.05 M-circle dot and radius R-* = 1.65 +/- 0.04 R-circle dot. The planet has a mass of M-P = 1.11 +/- 0.06 M-Jup and radius of R-P = 1.29 +/- 0.03 R-Jup. The resulting bulk density is only rho = 0.71 +/- 0.06 g cm (3), which is much lower than that for Jupiter. Conclusions. The exoplanet CoRoT-19b is an example of a giant planet of almost the same mass as Jupiter but a approximate to 30% larger radius.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polythermal glaciers, i.e. glaciers with a combination of ice at and below the freezing point, are widespread in arctic and subarctic environments. The polythermal structure has major implications for glacier hydrology, ice flow and glacial erosion. However, the interplay of factors governing its spatial and temporal variations such as net mass balance, ice advection and water content in the ice is poorly investigated and as yet not fully understood. This study deals with a thorough investigation of the polythermal regime on Storglaciären, northern Sweden, a small valley glacier with a cold surface layer in the ablation area. Extensive field work was performed including mapping of the cold surface layer using ground-penetrating radar, ice temperature measurements, mass balance and ice velocity measurements. Analyses of these data combined with numerical modelling were used specifically to investigate the spatial and temporal variability of the cold surface layer, the spatial distribution of the water content just below the cold surface layer transition, the effect of radar frequency on the detection of the surface layer, and the sensitivity of the cold surface layer to changes in forcing. A comparison between direct temperature measurements in boreholes and ground-penetrating surveys shows that the radar-inferred cold-temperate transition depth is within ±1 m from the melting point of ice at frequencies above ~300 MHz. At frequencies below ~155 MHz, the accuracy degrades because of reduced scattering efficiency that occurs when the scatterers become much smaller compared to the wavelength. The mapped spatial pattern of the englacial cold-temperate transition boundary is complex. This pattern reflects the observed spatial variation in net loss of ice at the surface by ablation and vertical advection of ice, which is suggested to provide the predominant forcing of the cold surface layer thickness pattern. This is further supported by thermomechanical modeling of the cold surface layer, which indicates high sensitivity of the cold surface layer thickness to changes in vertical advection rates. The water content is the least investigated quantity that is relevant for the thermal regime of glaciers, but also the most difficult to assess. Spatial variability of absolute water content in the temperate ice immediately below the cold surface layer on Storglaciären was determined by combining relative estimates of water content from ground-penetrating radar data with absolute determination from temperature measurements and the thermal boundary condition at the freezing front. These measurements indicate large-scale spatial variability in the water content, which seems to arise from variations in entrapment of water at the firn-ice transition. However, this variability cannot alone explain the spatial pattern in the thermal regime on Storglaciären. Repeated surveys of the cold surface layer show a 22% average thinning of the cold surface layer on Storglaciären between 1989 and 2001. Transient thermomechanical modeling results suggest that the cold surface layer adapts to new equilibrium conditions in only a few decades after a perturbation in the forcing is introduced. An increased winter air temperature since mid-1980s seems to be the cause of the observed thinning of the cold surface layer. Over the last decades, mass balance measurements indicate that the glacier has been close to a steady state. The quasi-steady state situation is also reflected in the vertical advection, which shows no significant changes during the last decades. Increased winter temperatures at the ice surface would result in a slow-down of the formation of cold ice at the base of the cold surface layer and lead to a larger imbalance between net loss of ice at the surface and freezing of temperate ice at the cold-temperate transition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Radial velocities measured from near-infrared (NIR) spectra are a potential tool to search for extrasolar planets around cool stars. High resolution infrared spectrographs now available reach the high precision of visible instruments, with a constant improvement over time. GIANO is an infrared echelle spectrograph and it is a powerful tool to provide high resolution spectra for accurate radial velocity measurements of exo-planets and for chemical and dynamical studies of stellar or extragalactic objects. No other IR instruments have the GIANO's capability to cover the entire NIR wavelength range. In this work we develop an ensemble of IDL procedures to measure high precision radial velocities on a few GIANO spectra acquired during the commissioning run, using the telluric lines as wevelength reference. In Section 1.1 various exoplanet search methods are described. They exploit different properties of the planetary system. In Section 1.2 we describe the exoplanet population discovered trough the different methods. In Section 1.3 we explain motivations for NIR radial velocities and the challenges related the main issue that has limited the pursuit of high-precision NIR radial velocity, that is, the lack of a suitable calibration method. We briefly describe calibration methods in the visible and the solutions for IR calibration, for instance, the use of telluric lines. The latter has advantages and problems, described in detail. In this work we use telluric lines as wavelength reference. In Section 1.4 the Cross Correlation Function (CCF) method is described. This method is widely used to measure the radial velocities.In Section 1.5 we describe GIANO and its main science targets. In Chapter 2 observational data obtained with GIANO spectrograph are presented and the choice criteria are reported. In Chapter 3 we describe the detail of the analysis and examine in depth the flow chart reported in Section 3.1. In Chapter 4 we give the radial velocities measured with our IDL procedure for all available targets. We obtain an rms scatter in radial velocities of about 7 m/s. Finally, we conclude that GIANO can be used to measure radial velocities of late type stars with an accuracy close to or better than 10 m/s, using telluric lines as wevelength reference. In 2014 September GIANO is being operative at TNG for Science Verification and more observational data will allow to further refine this analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Water held in the unsaturated zone is important for agriculture and construction and is replenished by infiltrating rainwater. Monitoring the soil water content of clay soils using ground-penetrating radar (GPR) has not been researched, as clay soils cause attenuation of GPR signal. In this study, GPR common-midpoint soundings (CMPs) are used in the clayey soils of the Miller Run floodplain to monitor changes in the soil water content (SWC) before and after rainfall events. GPR accomplishes this task because increases in water content will increase the dielectric constant of the subsurface material, and decrease the velocity of the GPR wave. Using an empirical relationship between dielectric constant and SWC, the Topp relation, we are able to calculate a SWC from these velocity measurements. Non-invasive electromagnetics, resistivity, and seismic were performed, and from these surveys, the layering at the field site was delineated. EM characterized the horizontal variation of the soil, allowing us to target the most clay rich area. At the CMP location, resistivity indicates the vertical structure of the subsurface consists of a 40 cm thick layer with a resistivity of 100 ohm*m. Between 40 cm and 1.5 m is a layer with a resistivity of 40 ohm*m. The thickness estimates were confirmed with invasive auger and trenching methods away from the CMP location. GPR CMPs were collected relative to a July 2013 and September 2013 storm. The velocity observations from the CMPs had a precision of +/- 0.001 m/ns as assessed by repeat analysis. In the case of both storms, the GPR data showed the expected relationship between the rainstorms and calculated SWC, with the SWC increasing sharply after the rainstorm and decreasing as time passed. We compared these data to auger core samples collected at the same time as the CMPs were taken, and the volumetric analysis of the cores confirmed the trend seen in the GPR, with SWC values between 3 and 5 percent lower than the GPR estimates. Our data shows that we can, with good precision, monitor changes in the SWC of conductive soils in response to rainfall events, despite the attenuation induced by the clay.