996 resultados para Vapor Compression Cycle
Resumo:
A study was performed regarding the effect of the relation between fill time, volume treated per cycle, and influent concentration at different applied organic loadings on the stability and efficiency of an anaerobic sequencing batch reactor containing immobilized biomass on polyurethane foam with recirculation of the liquid phase (AnSBBR) applied to the treatment of wastewater from a personal care industry. Total cycle length of the reactor was 8 h (480 min). Fill times were 10 min in the batch operation, 4 h in the fed-batch operation, and a 10-min batch followed by a 4-h fed batch in the mixed operation. Settling time was not necessary since the biomass was immobilized and decant time was 10 min. Volume of liquid medium in the reactor was 2.5 L, whereas volume treated per cycle ranged from 0.88 to 2.5 L in accordance with fill time. Influent concentration varied from 300 to 1,425 mg COD/L, resulting in an applied volumetric organic load of 0.9 and 1.5 g COD/L.d. Recirculation flow rate was 20 L/h, and the reactor was maintained at 30 A degrees C. Values of organic matter removal efficiency of filtered effluent samples were below 71% in the batch operations and above 74% in the operations of fed batch followed by batch. Feeding wastewater during part of the operational cycle was beneficial to the system, as it resulted in indirect control over the conversion of substrate into intermediates that would negatively interfere with the biochemical reactions regarding the degradation of organic matter. As a result, the average substrate consumption increased, leading to higher organic removal efficiencies in the fed-batch operations.
Resumo:
An assessment is made of the atmospheric emissions from the life cycle of fuel ethanol coupled with the cogeneration of electricity from sugarcane in Brazil. The total exergy loss from the most quantitative relevant atmospheric emission substances produced by the life cycle of fuel ethanol is 3.26E+05 kJ/t of C(2)H(5)OH, Compared with the chemical exergy of 1 t of ethanol (calculated as 34.56E + 06 kJ). the exergy loss from the life cycle`s atmospheric emission represents 1.11% of the product`s exergy. The activity that most contributes to atmospheric emission chemical exergy losses is the harvesting of sugarcane through the methane emitted in burning. Suggestions for improved environmental quality and greater efficiency of the life cycle of fuel ethanol with cogenerated energy are: harvesting the sugarcane without burning, renewable fuels should be used in tractors, trucks and buses instead of fossil fuel and the transportation of products and input should be logistically optimized. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes the procedures of the analysis Of Pollutant gases, as volatile organic compounds (benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene) emitted by engines, using high-resolution gas chromatography (HRGC). In a broad sense, CI engine burning diesel was compared with B10 and a drastic reduction was observed in the emissions of the aromatic compounds by using B10. Especially for benzene, the reduction of concentrations occurs on the level of about 19.5%. Although a concentration value below 1 mu g ml(-1) has been obtained, this reduction is extremely significant since benzene is a carcinogenic compound. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A Thermodynamic air-standard cycle was envisaged for Ranque-Hilsh (R-H) or Vortex Tubes to provide relevant Thermodynamic analysis and tools for setting operating limits according to the conservation laws of mass and energy, as well as the constraint of the Second Law of Thermodynamics. The study used an integral or control volume approach and resulted in establishing working equations for evaluating the performance of an R-H tube. The work proved that the coefficient of performance does not depend on the R-H tube operating mode, i.e., the same value is obtained independently if the R-H tube operates either as a heat pump or as a refrigeration device. It was also shown that the isentropic coefficient of performance displays optima values of cold and hot mass fractions for a given operating pressure ratio. Finally, the study was concluded by comparing the present analysis with some experimental data available in the literature for operating pressures ranging 2-11 atm. (C) 2010 Elsevier Ltd and IIR. All rights reserved.
Resumo:
The proposed method to analyze the composition of the cost of electricity is based on the energy conversion processes and the destruction of the exergy through the several thermodynamic processes that comprise a combined cycle power plant. The method uses thermoeconomics to evaluate and allocate the cost of exergy throughout the processes, considering costs related to inputs and investment in equipment. Although the concept may be applied to any combined cycle or cogeneration plant, this work develops only the mathematical modeling for three-pressure heat recovery steam generator (HRSG) configurations and total condensation of the produced steam. It is possible to study any n x 1 plant configuration (n sets of gas turbine and HRSGs associated to one steam turbine generator and condenser) with the developed model, assuming that every train operates identically and in steady state. The presented model was conceived from a complex configuration of a real power plant, over which variations may be applied in order to adapt it to a defined configuration under study [Borelli SJS. Method for the analysis of the composition of electricity costs in combined cycle thermoelectric power plants. Master in Energy Dissertation, Interdisciplinary Program of Energy, Institute of Eletro-technical and Energy, University of Sao Paulo, Sao Paulo, Brazil, 2005 (in Portuguese)]. The variations and adaptations include, for instance, use of reheat, supplementary firing and partial load operation. It is also possible to undertake sensitivity analysis on geometrical equipment parameters. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The evaporators of sugar plants in Brazil have used carbon steel intensively because of it is, a low priced material, which possesses inferior corrosion resistance. The materials more indicated for the substitution of carbon steel are stainless steels, however they are considered expensive. The environmental and financial performances of evaporator pipes constructed with carbon steel and with types AISI 304 444 and 439 stainless steel were evaluated. For the environmental evaluation, the Life Cycle Assessment (LCA) methodology Was used and it, revealed that stainless steel is more environmentally efficient than carbon steel. The life cycle costing (LCC) technique was the tool chosen for the financial evaluation and it showed that stainless steel is a better investment option compared to carbon steel. The results also indicate that LCA and LCC methodologies must be used together Therefore, it can he seen that safer environmental products can come to be the most profitable investment options.
Resumo:
In this work, we have studied the influence of the substrate surface condition on the roughness and the structure of the nanostructured DLC films deposited by High Density Plasma Chemical Vapor Deposition. Four methods were used to modify the silicon wafers surface before starting the deposition processes of the nanostructured DLC films: micro-diamond powder dispersion, micro-graphite powder dispersion, and roughness generation by wet chemical etching and roughness generation by plasma etching. The reference wafer was only submitted to a chemical cleaning. It was possible to see that the final roughness and the sp(3) hybridization degree strongly depend on the substrate surface conditions. The surface roughness was observed by AFM and SEM and the hybridization degree of the DLC films was analyzed by Raman Spectroscopy. In these samples, the final roughness and the sp(3) hybridization quantity depend strongly on the substrate surface condition. Thus, the effects of the substrate surface on the DLC film structure were confirmed. These phenomena can be explained by the fact that the locally higher surface energy and the sharp edges may induce local defects promoting the nanostructured characteristics in the DLC films. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In addition to adenosine triphosphate (ATP) production, mitochondria have been implicated in the regulation of several physiological responses in plants, such as programmed cell death (PCD) activation. Salicylic acid (SA) and reactive oxygen species (ROS) are essential signaling molecules involved in such physiological responses; however, the mechanisms by which they act remain unknown. In non-photosynthesizing tissues, mitochondria appear to serve as the main source of ROS generation. Evidence suggests that SA and ROS could regulate plant PCD through a synergistic mechanism that involves mitochondria. Herein, we isolate and characterize the mitochondria from non-photosynthesizing cell suspension cultures of Rubus fruticosus. Furthermore, we assess the primary site of ROS generation and the effects of SA on isolated organelles. Mitochondrial Complex III was found to be the major source of ROS generation in this model. In addition, we discovered that SA inhibits the electron transport chain by inactivating the semiquinone radical during the Q cycle. Computational analyses confirmed the experimental data, and a mechanism for this action is proposed.
Resumo:
The effects of PLC and Pkc inhibitors on Aspergillus nidulans depend on the carbon source. PLC inhibitors Spm and C48/80 delayed the first nuclear division in cultures growing on glucose, but stimulated it in media supplemented with pectin. Less intense were these effects on the mutant transformed with PLC-A gene rupture (AP27). Neomycin also delayed the germination in cultures growing on glucose or pectin; however, on glucose, the nuclear division was inhibited whereas in pectin it was stimulated. These effects were minor in AP27. The effects of Ro-31-8425 and BIM (both Pkc inhibitors) were also opposite for cultures growing on glucose or pectin. On glucose cultures of both strains BIM delayed germination and the first nuclear division, whereas on pectin both parameters were stimulated. Opposite effects were also detected when the cultures were growing on glucose or pectin in the presence of Ro-31-8425.
Resumo:
A simple method with a fast sample preparation procedure for total and inorganic mercury determinations in blood samples is proposed based on flow injection cold vapor inductively coupled plasma mass spectrometry (FI-CVICP-MS). Aliquots of whole blood (500 mL) are diluted 1 + 1 v/v with 10.0% v/v tetramethylammonium hydroxide (TMAH) solution, incubated for 3 h at room temperature and then further diluted 1 + 4 v/v with 2.0% v/v HCl. The inorganic Hg was released by online addition of L-cysteine and then reduced to elemental Hg by SnCl(2). On the other hand, total mercury was determined by on-line addition of KMnO(4) and then reduced to elemental Hg by NaBH(4). Samples were calibrated against matrix-matching. The method detection limit was found to be 0.80 mu g L(-1) and 0.08 mu g L(-1) for inorganic and total mercury, respectively. Sample throughput is 20 samples h(-1). The method accuracy is traceable to Standard Reference Material (SRM) 966 Toxic Metals in Bovine Blood from the National Institute of Standards and Technology (NIST). For additional validation purposes, human whole blood samples were analyzed by the proposed method and by an established CV AAS method, with no statistical difference between the two techniques at 95% confidence level on applying the t-test.
Resumo:
The aim of this study was to investigate the interference of a daily treatment of dexamethasone in the pulmonary cycle of Strongyloides venezuelensis infection in rats. Three principal effects were found: 1) increased alveolar hemorrhagic inflammation provoked by the passage of larvae into alveolar spaces; 2) significant decrease of eosinophil and mast cell migration to the axial septum of the lungs; and 3) impaired formation of the reticular fiber network, interfering with granuloma organization. This study showed that the use of drugs with immunomodulatory actions, such as dexamethasone, in addition to interfering with the morbidity from the pulmonary cycle of S. venezuelensis infection, may contribute to showing the mechanisms involved in its pathogenesis.
Resumo:
The present article describes an L-amino acid oxidase from Bothrops atrox snake venom as with antiprotozoal activities in Trypanosoma cruzi and in different species of Leishmania (Leishmania braziliensis, Leishmania donovani and Leishmania major). Leishmanicidal effects were inhibited by catalase, suggesting that they are mediated by H(2)O(2) production. Leishmania spp. cause a spectrum of diseases, ranging from self-healing ulcers to disseminated and often fatal infections, depending on the species involved and the host`s immune response. BatroxLAAO also displays bactericidal activity against both Gram-positive and Gram-negative bacteria. The apoptosis induced by BatroxLAAO on HL-60 cell lines and PBMC cells was determined by morphological cell evaluation using a mix of fluorescent dyes. As revealed by flow cytometry analysis, suppression of cell proliferation with BatroxLAAO was accompanied by the significant accumulation of cells in the G0/G1 phase boundary in HL-60 cells. BatroxLAAO at 25 mu g/mL and 50 mu g/mL blocked G0-G1 transition, resulting in G0/G1 phase cell cycle arrest, thereby delaying the progression of cells through S and G2/M phase in HL-60 cells. This was shown by an accentuated decrease in the proportion of cells in S phase, and the almost absence of G2/M phase cell population. BatroxLAAO is an interesting enzyme that provides a better understanding of the ophidian envenomation mechanism, and has biotechnological potential as a model for therapeutic agents. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
We report on a quantitative study of the growth process of 87Rb Bose-Einstein condensates. By continuous evaporative cooling we directly control the thermal cloud from which the condensate grows. We compare the experimental data with the results of a theoretical model based on quantum kinetic theory. We find quantitative agreement with theory for the situation of strong cooling, whereas in the weak cooling regime a distinctly different behavior is found in the experiment.