960 resultados para Valve point effects
Resumo:
BACKGROUND Antiretroviral treatment (ART) in children has special features and consequently, results obtained from clinical trials with antiretroviral drugs in adults may not be representative of children. Nelfinavir (NFV) is an HIV-1 Protease Inhibitor (PI) which has become as one of the first choices of PI for ART in children. We studied during a 3-year follow-up period the effects of highly active antiretroviral therapy with nelfinavir in vertically HIV-1 infected children. METHODS Forty-two vertically HIV-infected children on HAART with NFV were involved in a multicentre prospective study. The children were monitored at least every 3 months with physical examinations, and blood sample collection to measure viral load (VL) and CD4+ cell count. We performed a logistic regression analysis to determinate the odds ratio of baseline characteristics on therapeutic failure. RESULTS Very important increase in CD4+ was observed and VL decreased quickly and it remained low during the follow-up study. Children with CD4+ <25% at baseline achieved CD4+ >25% at 9 months of follow-up. HIV-infected children who achieved undetectable viral load (uVL) were less than 40% in each visit during follow-up. Nevertheless, HIV-infected children with VL >5000 copies/ml were less than 50% during the follow-up study. Only baseline VL was an important factor to predict VL control during follow-up. Virological failure at defined end-point was confirmed in 30/42 patients. Along the whole of follow-up, 16/42 children stopped HAART with NFV. Baseline characteristics were not associated with therapeutic change. CONCLUSION NFV is a safe drug with a good profile and able to achieve an adequate response in children.
Resumo:
Members of the human APOBEC3 family of editing enzymes can inhibit various mobile genetic elements. APOBEC3A (A3A) can block the retrotransposon LINE-1 and the parvovirus adeno-associated virus type 2 (AAV-2) but does not inhibit retroviruses. In contrast, APOBEC3G (A3G) can block retroviruses but has only limited effects on AAV-2 or LINE-1. What dictates this differential target specificity remains largely undefined. Here, we modeled the structure of A3A based on its homology with the C-terminal domain of A3G and further compared the sequence of human A3A to those of 11 nonhuman primate orthologues. We then used these data to perform a mutational analysis of A3A, examining its ability to restrict LINE-1, AAV-2, and foreign plasmid DNA and to edit a single-stranded DNA substrate. The results revealed an essential functional role for the predicted single-stranded DNA-docking groove located around the A3A catalytic site. Within this region, amino acid differences between A3A and A3G are predicted to affect the shape of the polynucleotide-binding groove. Correspondingly, transferring some of these A3A residues to A3G endows the latter protein with the ability to block LINE-1 and AAV-2. These results suggest that the target specificity of APOBEC3 family members is partly defined by structural features influencing their interaction with polynucleotide substrates.
Resumo:
Background: Chronic venous insufficiency (CVI) represents a major global health problem with increasing prevalence and morbidity. CVI is due to an incompetence of the venous valves, which causes venous reflux and distal venous hypertension. Several studies have focused on the replacement of diseased venous valves using xeno- and allogenic transplants, so far with moderate success due to immunologic and thromboembolic complications. Autologous cell-derived tissue-engineered venous valves (TEVVs) based on fully biodegradable scaffolds could overcome these limitations by providing non-immunogenic, non-thrombogenic constructs with remodeling and growth potential. Methods: Tri- and bicuspid venous valves (n=27) based on polyglycolic acid-poly-4-hydroxybutyrate composite scaffolds, integrated into self-expandable nitinol stents, were engineered from autologous ovine bone-marrow-derived mesenchymal stem cells (BM-MSCs) and endothelialized. After in vitro conditioning in a (flow) pulse duplicator system, the TEVVs were crimped (n=18) and experimentally delivered (n=7). The effects of crimping on the tissue-engineered constructs were investigated using histology, immunohistochemistry, scanning electron microscopy, grating interferometry (GI), and planar fluorescence reflectance imaging. Results: The generated TEVVs showed layered tissue formation with increasing collagen and glycosaminoglycan levels dependent on the duration of in vitro conditioning. After crimping no effects were found on the MSC level in scanning electron microscopy analysis, GI, histology, and extracellular matrix analysis. However, substantial endothelial cell loss was detected after the crimping procedure, which could be reduced by increasing the static conditioning phase. Conclusions: Autologous living small-diameter TEVVs can be successfully fabricated from ovine BM-MSCs using a (flow) pulse duplicator conditioning approach. These constructs hold the potential to overcome the limitations of currently used non-autologous replacement materials and may open new therapeutic concepts for the treatment of CVI in the future.
Resumo:
The longwave emission of planetary atmospheres that contain a condensable absorbing gas in the infrared (i.e., longwave), which is in equilibrium with its liquid phase at the surface, may exhibit an upper bound. Here we analyze the effect of the atmospheric absorption of sunlight on this radiation limit. We assume that the atmospheric absorption of infrared radiation is independent of wavelength except within the spectral width of the atmospheric window, where it is zero. The temperature profile in radiative equilibrium is obtained analytically as a function of the longwave optical thickness. For illustrative purposes, numerical values for the infrared atmospheric absorption (i.e., greenhouse effect) and the liquid vapor equilibrium curve of the condensable absorbing gas refer to water. Values for the atmospheric absorption of sunlight (i.e., antigreenhouse effect) take a wide range since our aim is to provide a qualitative view of their effects. We find that atmospheres with a transparent region in the infrared spectrum do not present an absolute upper bound on the infrared emission. This result may be also found in atmospheres opaque at all infrared wavelengths if the fraction of absorbed sunlight in the atmosphere increases with the longwave opacity
Resumo:
SUMMARY : The function of sleep for the organism is one of the most persistent and perplexing questions in biology. Current findings lead to the conclusion that sleep is primarily for the brain. In particular, a role for sleep in cognitive aspects of brain function is supported by behavioral evidence both in humans and animals. However, in spite of remarkable advancement in the understanding of the mechanisms underlying sleep generation and regulation, it has been proven difficult to determine the neurobiological mechanisms underlying the beneficial effect of sleep, and the detrimental impact of sleep loss, on learning and memory processes. In my thesis, I present results that lead to several critical steps forward in the link between sleep and cognitive function. My major result is the molecular identification and physiological analysis of a protein, the NR2A subunit of NMDA receptor (NMDAR), that confers sensitivity to sleep loss to the hippocampus, a brain structure classically involved in mnemonic processes. Specifically, I used a novel behavioral approach to achieve sleep deprivation in adult C57BL6/J mice, yet minimizing the impact of secondary factors associated with the procedure,.such as stress. By using in vitro electrophysiological analysis, I show, for the first time, that sleep loss dramatically affects bidirectional plasticity at CA3 to CA1 synapses in the hippocampus, a well established cellular model of learning and memory. 4-6 hours of sleep loss elevate the modification threshold for bidirectional synaptic plasticity (MT), thereby promoting long-term depression of CA3 to CA 1 synaptic strength after stimulation in the theta frequency range (5 Hz), and rendering long-term potentiation induction.more difficult. Remarkably, 3 hours of recovery sleep, after the deprivation, reset the MT at control values, thus re-establishing the normal proneness of synapses to undergo long-term plastic changes. At the molecular level, these functional changes are paralleled by a change in the NMDAR subunit composition. In particular, the expression of the NR2A subunit protein of NMDAR at CA3 to CA1 synapses is selectively and rapidly increased by sleep deprivation, whereas recovery sleep reset NR2A synaptic content to control levels. By using an array of genetic, pharmacological and computational approaches, I demonstrate here an obligatory role for NR2A-containing NMDARs in conveying the effect of sleep loss on CA3 to CAl MT. Moreover, I show that a genetic deletion of the NR2A subunit fully preserves hippocampal plasticity from the impact of sleep loss, whereas it does not alter sleepwake behavior and homeostatic response to sleep deprivation. As to the mechanism underlying the effects of the NR2A subunit on hippocampal synaptic plasticity, I show that the increased NR2A expression after sleep loss distinctly affects the contribution of synaptic and more slowly recruited NMDAR pools activated during plasticity-induction protocols. This study represents a major step forward in understanding the mechanistic basis underlying sleep's role for the brain. By showing that sleep and sleep loss affect neuronal plasticity by regulating the expression and function of a synaptic neurotransmitter receptor, I propose that an important aspect of sleep function could consist in maintaining and regulating protein redistribution and ion channel trafficking at central synapses. These findings provide a novel starting point for investigations into the connections between sleep and learning, and they may open novel ways for pharmacological control over hippocampal .function during periods of sleep restriction. RÉSUMÉ DU PROJET La fonction du sommeil pour l'organisme est une des questions les plus persistantes et difficiles dans la biologie. Les découvertes actuelles mènent à la conclusion que le sommeil est essentiel pour le cerveau. En particulier, le rôle du sommeil dans les aspects cognitifs est soutenu par des études comportementales tant chez les humains que chez les animaux. Cependant, malgré l'avancement remarquable dans la compréhension des mécanismes sous-tendant la génération et la régulation du sommeil, les mécanismes neurobiologiques qui pourraient expliquer l'effet favorable du sommeil sur l'apprentissage et la mémoire ne sont pas encore clairs. Dans ma thèse, je présente des résultats qui aident à clarifier le lien entre le sommeil et la fonction cognitive. Mon résultat le plus significatif est l'identification moléculaire et l'analyse physiologique d'une protéine, la sous-unité NR2A du récepteur NMDA, qui rend l'hippocampe sensible à la perte de sommeil. Dans cette étude, nous avons utilisé une nouvelle approche expérimentale qui nous a permis d'induire une privation de sommeil chez les souris C57BL6/J adultes, en minimisant l'impact de facteurs confondants comme, par exemple, le stress. En utilisant les techniques de l'électrophysiologie in vitro, j'ai démontré, pour la première fois, que la perte de sommeil est responsable d'affecter radicalement la plasticité bidirectionnelle au niveau des synapses CA3-CA1 de l'hippocampe. Cela correspond à un mécanisme cellulaire de l'apprentissage et de la mémoire bien établi. En particulier, 4-6 heures de privation de sommeil élèvent le seuil de modification pour la plasticité synaptique bidirectionnelle (SM). Comme conséquence, la dépression à long terme de la transmission synaptique est induite par la stimulation des fibres afférentes dans la bande de fréquences thêta (5 Hz), alors que la potentialisation à long terme devient plus difficile. D'autre part, 3 heures de sommeil de récupération sont suffisant pour rétablir le SM aux valeurs contrôles. Au niveau moléculaire, les changements de la plasticité synaptiques sont associés à une altération de la composition du récepteur NMDA. En particulier, l'expression synaptique de la protéine NR2A du récepteur NMDA est rapidement augmentée de manière sélective par la privation de sommeil, alors que le sommeil de récupération rétablit l'expression de la protéine au niveau contrôle. En utilisant des approches génétiques, pharmacologiques et computationnelles, j'ai démontré que les récepteurs NMDA qui expriment la sous-unité NR2A sont responsables de l'effet de la privation de sommeil sur le SM. De plus, nous avons prouvé qu'une délétion génétique de la sous-unité NR2A préserve complètement la plasticité synaptique hippocampale de l'impact de la perte de sommeil, alors que cette manipulation ne change pas les mécanismes de régulation homéostatique du sommeil. En ce qui concerne les mécanismes, j'ai .découvert que l'augmentation de l'expression de la sous-unité NR2A au niveau synaptique modifie les propriétés de la réponse du récepteur NMDA aux protocoles de stimulations utilisés pour induire la plasticité. Cette étude représente un pas en avant important dans la compréhension de la base mécaniste sous-tendant le rôle du sommeil pour le cerveau. En montrant que le sommeil et la perte de sommeil affectent la plasticité neuronale en régulant l'expression et la fonction d'un récepteur de la neurotransmission, je propose qu'un aspect important de la fonction du sommeil puisse être finalisé au règlement de la redistribution des protéines et du tracking des récepteurs aux synapses centraux. Ces découvertes fournissent un point de départ pour mieux comprendre les liens entre le sommeil et l'apprentissage, et d'ailleurs, ils peuvent ouvrir des voies pour des traitements pharmacologiques dans le .but de préserver la fonction hippocampale pendant les périodes de restriction de sommeil.
Resumo:
Recently, there has been an increased interest on the neural mechanisms underlying perceptual decision making. However, the effect of neuronal adaptation in this context has not yet been studied. We begin our study by investigating how adaptation can bias perceptual decisions. We considered behavioral data from an experiment on high-level adaptation-related aftereffects in a perceptual decision task with ambiguous stimuli on humans. To understand the driving force behind the perceptual decision process, a biologically inspired cortical network model was used. Two theoretical scenarios arose for explaining the perceptual switch from the category of the adaptor stimulus to the opposite, nonadapted one. One is noise-driven transition due to the probabilistic spike times of neurons and the other is adaptation-driven transition due to afterhyperpolarization currents. With increasing levels of neural adaptation, the system shifts from a noise-driven to an adaptation-driven modus. The behavioral results show that the underlying model is not just a bistable model, as usual in the decision-making modeling literature, but that neuronal adaptation is high and therefore the working point of the model is in the oscillatory regime. Using the same model parameters, we studied the effect of neural adaptation in a perceptual decision-making task where the same ambiguous stimulus was presented with and without a preceding adaptor stimulus. We find that for different levels of sensory evidence favoring one of the two interpretations of the ambiguous stimulus, higher levels of neural adaptation lead to quicker decisions contributing to a speed–accuracy trade off.
Resumo:
BACKGROUND: The clinical profile and outcome of nosocomial and non-nosocomial health care-associated native valve endocarditis are not well defined. OBJECTIVE: To compare the characteristics and outcomes of community-associated and nosocomial and non-nosocomial health care-associated native valve endocarditis. DESIGN: Prospective cohort study. SETTING: 61 hospitals in 28 countries. PATIENTS: Patients with definite native valve endocarditis and no history of injection drug use who were enrolled in the ICE-PCS (International Collaboration on Endocarditis Prospective Cohort Study) from June 2000 to August 2005. MEASUREMENTS: Clinical and echocardiographic findings, microbiology, complications, and mortality. RESULTS: Health care-associated native valve endocarditis was present in 557 (34%) of 1622 patients (303 with nosocomial infection [54%] and 254 with non-nosocomial infection [46%]). Staphylococcus aureus was the most common cause of health care-associated infection (nosocomial, 47%; non-nosocomial, 42%; P = 0.30); a high proportion of patients had methicillin-resistant S. aureus (nosocomial, 57%; non-nosocomial, 41%; P = 0.014). Fewer patients with health care-associated native valve endocarditis had cardiac surgery (41% vs. 51% of community-associated cases; P < 0.001), but more of the former patients died (25% vs. 13%; P < 0.001). Multivariable analysis confirmed greater mortality associated with health care-associated native valve endocarditis (incidence risk ratio, 1.28 [95% CI, 1.02 to 1.59]). LIMITATIONS: Patients were treated at hospitals with cardiac surgery programs. The results may not be generalizable to patients receiving care in other types of facilities or to those with prosthetic valves or past injection drug use. CONCLUSION: More than one third of cases of native valve endocarditis in non-injection drug users involve contact with health care, and non-nosocomial infection is common, especially in the United States. Clinicians should recognize that outpatients with extensive out-of-hospital health care contacts who develop endocarditis have clinical characteristics and outcomes similar to those of patients with nosocomial infection. PRIMARY FUNDING SOURCE: None.
Resumo:
The present paper is aimed at identifying what are the effects of the Point System of Selection of immigrants in Quebec. I defend that the distribution of points results in a different composition of immigrant stocks in terms of origin mix and not in terms of labour skills. To do so, I carry out a longitudinal descriptive analysis on the national composition of immigrants in Quebec and two other significant provinces (Ontario and British Columbia), as well as an analysis of the distribution of points in Quebec and in the rest of Canada.
Resumo:
We study whether and how fiscal restrictions alter the business cycle features of macrovariables for a sample of 48 US states. We also examine the typical transmission properties of fiscal disturbances and the implied fiscal rules of states with different fiscal restrictions. Fiscal constraints are characterized with a number of indicators. There are similarities in second moments of macrovariables and in the transmission properties of fiscal shocks across states with different fiscal constraints. The cyclical response of expenditure differs in size and sometimes in sign, but heterogeneity within groups makes point estimates statistically insignificant. Creative budget accounting is responsible for the pattern. Implications for the design of fiscal rules and the reform of the Stability and Growth Pact are discussed.
Resumo:
Smoking remains a major public health problem. It is associated with a considerable number of deaths in the world's population. Smoking is just like high blood pressure, an independent predictor of progression to any primary renal disease and renal transplant patients. It seems that smoking cessation slows the progression of kidney disease in smokers. The literature data are sometimes contradictory about it because of some methodological weaknesses. However, experimental models highlight the harmful effects of tobacco by hemodynamic and non-hemodynamic factors. The conclusion is that a major effort should be further produced by the nephrology community to motivate our patients to stop smoking.
Resumo:
The demand for accurate forecasting of the effects of global warming on biodiversity is growing, but current methods for forecasting have limitations. in this article, we compare and discuss the different uses of four forecasting methods: (1) models that consider species individually, (2) niche-theory models that group species by habitat (more specifically, by environmental conditions under which a species can persist or does persist), (3) general circulation models and coupled ocean-atmosphere-biosphere models, and (4) specics-area curve models that consider all species or large aggregates of species. After outlining the different uses and limitations of these methods, we make eight primary suggestions for improving forecasts. We find that greater use of the fossil record and of modern genetic studies would improve forecasting methods. We note a Quaternary conundrum: While current empirical and theoretical ecological results suggest that many species could be at risk from global warming, during the recent ice ages surprisingly few species became extinct. The potential resolution of this conundrum gives insights into the requirements for more accurate and reliable forecasting. Our eight suggestions also point to constructive synergies in the solution to the different problems.
Resumo:
The interest in solar ultraviolet (UV) radiation from the scientific community and the general population has risen significantly in recent years because of the link between increased UV levels at the Earth's surface and depletion of ozone in the stratosphere. As a consequence of recent research, UV radiation climatologies have been developed, and effects of some atmospheric constituents (such as ozone or aerosols) have been studied broadly. Correspondingly, there are well-established relationships between, for example, total ozone column and UV radiation levels at the Earth's surface. Effects of clouds, however, are not so well described, given the intrinsic difficulties in properly describing cloud characteristics. Nevertheless, the effect of clouds cannot be neglected, and the variability that clouds induce on UV radiation is particularly significant when short timescales are involved. In this review we show, summarize, and compare several works that deal with the effect of clouds on UV radiation. Specifically, works reviewed here approach the issue from the empirical point of view: Some relationship between measured UV radiation in cloudy conditions and cloud-related information is given in each work. Basically, there are two groups of methods: techniques that are based on observations of cloudiness (either from human observers or by using devices such as sky cameras) and techniques that use measurements of broadband solar radiation as a surrogate for cloud observations. Some techniques combine both types of information. Comparison of results from different works is addressed through using the cloud modification factor (CMF) defined as the ratio between measured UV radiation in a cloudy sky and calculated radiation for a cloudless sky. Typical CMF values for overcast skies range from 0.3 to 0.7, depending both on cloud type and characteristics. Despite this large dispersion of values corresponding to the same cloud cover, it is clear that the cloud effect on UV radiation is 15–45% lower than the cloud effect on total solar radiation. The cloud effect is usually a reducing effect, but a significant number of works report an enhancement effect (that is increased UV radiation levels at the surface) due to the presence of clouds. The review concludes with some recommendations for future studies aimed to further analyze the cloud effects on UV radiation
Resumo:
Abstract: Protective immune responses against pathogen invasion and transformed cells requires the coordinated action of distinct leukocyte subsets and soluble factors, overall termed immunological network. Among antigen-presenting cells (APC), a crucial role is played by dendritic cells (DC), which initiate, amplify and determine the outcome of the immune response. Micro-environmental conditions profoundly influence DC in such ways that the resulting immune response ranges from successful immune stimulation to abortive response or immune suppression. For instance, the presence in the milieu of anti-inflammatory cytokine interleukin-10 (IL-10) reverts most of the effects mediated on DC by even strong pro-inflammatory agents such as bacterial Lipopolysaccharide (LPS), in terms of differentiation, activation and functions. In an environment containing both LPS and IL-10, uncoupling of receptors for inflammatory chemokines already occurs after a few hours and in a reversible manner on DC, allowing scavenging of chemokines and, consequently, attenuation of the inflammatory process which could be deleterious to the organism. By studying the effects on DC of concomitant stimulation by LPS and IL-10 from the gene expression point of view, we were able to define four distinct transcriptional programs: A. the inhibition of inflammation and immunity, B. the regulation of tissue remodeling, C. the tuning of cytokine/growth factor receptors and G protein-coupled receptors, D. the stimulation of B cell function and lymphoid tissue neogenesis. Among the latter genes, we further demonstrated that IL-10 synergizes with Toll-like receptor ligands for the production of functionally active B cell attracting chemokine CXCL13. Our data provide evidence that the combined exposure of APC to LPS and IL-10, via the production of CXCL13, involves humoral immunity by attracting antibody-producing cells. It is well known that the persistent release of CXCL13 leads to the development of ectopic lymphoid tissue aggregates and production of high levels of antibodies, thus favoring the induction of auto-immunity. Our findings suggest that the IL-10 produced in chronic inflammatory conditions may promote lymphoid tissue neogenesis through increased release of CXCL13. IL-10 is an anti-inflammatory cytokine inhibiting cellular-mediated TH 1-polarized immune responses. In this study we demonstrate that IL- 10 strongly supports the development of humoral immunity. IL-10 and CXCL13 can thus be targets for specific therapies in auto-immune diseases.
Resumo:
Concentrations of the enantiomers of unconjugated and of total (unconjugated plus conjugated) mianserin, desmethylmianserin and 8-hydroxymianserin were measured in 12 patients before and after the introduction of carbamazepine. The dose of mianserin was 60 mg/d, carbamazepine was coadministered at 400 mg/d for 4 weeks, and blood samples were taken at weekly intervals after the introduction of carbamazepine. Each week, carbamazepine significantly decreased plasma concentrations of unconjugated and total (S)-mianserin (the more potent enantiomer) and of unconjugated and total (R)-mianserin. On average, plasma concentrations of unconjugated and total (S)-mianserin and of unconjugated and total (R)-mianserin were 55%, 56%, 66%, and 55%, respectively, of the corresponding values before introduction of carbamazepine. These results strongly suggest the involvement of CYP3A4, the major CYP enzyme induced by carbamazepine, in the metabolism of both enantiomers of mianserin. A strong decrease in the concentrations of (S)-8-hydroxymianserin was also measured (on average, the concentrations were 69% of the corresponding values before carbamazepine introduction). Conversely, plasma concentrations of unconjugated and of total (S)-desmethylmianserin, (R)-desmethylmianserin, and (R)-8-hydroxymianserin were only slightly modified by carbamazepine. From a clinical point of view, as a therapeutic window for (S)-mianserin has been recently suggested, the dose of racemic mianserin for a patient whose (S)-mianserin concentrations have been stabilized within this therapeutic window would need to be approximately doubled if carbamazepine, at 400 mg/d, is introduced as a comedication.
Resumo:
ic first-order transition line ending in a critical point. This critical point is responsible for the existence of large premartensitic fluctuations which manifest as broad peaks in the specific heat, not always associated with a true phase transition. The main conclusion is that premartensitic effects result from the interplay between the softness of the anomalous phonon driving the modulation and the magnetoelastic coupling. In particular, the premartensitic transition occurs when such coupling is strong enough to freeze the involved mode phonon. The implication of the results in relation to the available experimental data is discussed.