984 resultados para Validated Computations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth parameters were estimated for porbeagle shark (Lamna nasus) in the northwest Atlantic Ocean on the basis of vertebral annuli. A total of 578 vertebrae was analyzed. Annuli were validated up to an age of 11 years by using vertebrae from recaptured oxytetracycline-injected and known-age sharks. Males and females grew at similar rates until the size of male sexual maturity, after which the relative growth of the males declined. The growth rate of the females declined in a similar manner at the onset of maturity. Growth curves were consistent with those derived from tag-recapture analyses (GROTAG) of 76 recaptured fish and those based on length-frequency methods with measurements from 13,589 individuals. Von Bertalanffy growth curve parameters (combined sexes) were L∞ = 289.4 cm fork length, K = 0.07 and t0 = –6.06. Maximum age, based on vertebral band pair counts, was 25 and 24 years for males and females, respectively. Longevity calculations, however, indicated a maximum age of 45 to 46 years in an unfished population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conditional moment closure (CMC) method has been successfully applied to various non-premixed combustion systems in the past, but its application to premixed flames is not fully tested and validated. The main difficulty is associated with the modeling of conditional scalar dissipation rate of the conditioning scalar, the progress variable. A simple algebraic model for the conditional dissipation rate is validated using DNS results of a V-flame. This model along with the standard k- turbulence modeling is used in computations of stoichiometric pilot stabilized Bunsen flames using the RANS-CMC method. A first-order closure is used for the conditional mean reaction rate. The computed non reacting and reacting scalars are in reasonable agreement with the experimental measurements and are consistent with earlier computations using flamelets and transported PDF methods. Sensitivity to chemical kinetic mechanism is also assessed. The results suggest that the CMC may be applied across the regimes of premixed combustion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a wafer level three-dimensional simulation model of the Gate Commutated Thyristor (GCT) under inductive switching conditions. The simulations are validated by extensive experimental measurements. To the authors' knowledge such a complex simulation domain has not been used so far. This method allows the in depth study of large area devices such as GCTs, Gate Turn Off Thyristors (GTOs) and Phase Control Thyristors (PCTs). The model captures complex phenomena, such as current filamentation including subsequent failure, which allow us to predict the Maximum Controllable turn-off Current (MCC) and the Safe Operating Area (SOA) previously impossible using 2D distributed models. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study parameter estimation for time series with asymmetric α-stable innovations. The proposed methods use a Poisson sum series representation (PSSR) for the asymmetric α-stable noise to express the process in a conditionally Gaussian framework. That allows us to implement Bayesian parameter estimation using Markov chain Monte Carlo (MCMC) methods. We further enhance the series representation by introducing a novel approximation of the series residual terms in which we are able to characterise the mean and variance of the approximation. Simulations illustrate the proposed framework applied to linear time series, estimating the model parameter values and model order P for an autoregressive (AR(P)) model driven by asymmetric α-stable innovations. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conditional moment closure (CMC) method has been successfully applied to various non-premixed combustion systems in the past, but its application to premixed flames is not fully tested and validated. The main difficulty is associated with the modeling of conditional scalar dissipation rate of the conditioning scalar, the progress variable. A simple algebraic model for the conditional dissipation rate is validated using DNS results of a V-flame. This model along with the standard k- turbulence modeling is used in computations of stoichiometric pilot stabilized Bunsen flames using the RANS-CMC method. A first-order closure is used for the conditional mean reaction rate. The computed non reacting and reacting scalars are in reasonable agreement with the experimental measurements and are consistent with earlier computations using flamelets and transported PDF methods. Sensitivity to chemical kinetic mechanism is also assessed. The results suggest that the CMC may be applied across the regimes of premixed combustion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the major challenges in high-speed fan stages used in compact, embedded propulsion systems is inlet distortion noise. A body-force-based approach for the prediction of multiple-pure-tone (MPT) noise was previously introduced and validated. In this paper, it is employed with the objective of quantifying the effects of nonuniform flow on the generation and propagation of MPT noise. First-of-their-kind back-to-back coupled aero-acoustic computations were carried out using the new approach for conventional and serpentine inlets. Both inlets delivered flow to the same NASA/GE R4 fan rotor at equal corrected mass flow rates. Although the source strength at the fan is increased by 38 dB in sound power level due to the nonuniform inflow, far-field noise for the serpentine inlet duct is increased on average by only 3.1 dBA overall sound pressure level in the forward arc. This is due to the redistribution of acoustic energy to frequencies below 11 times the shaft frequency and the apparent cut-off of tones at higher frequencies including blade-passing tones. The circumferential extent of the inlet swirl distortion at the fan was found to be two blade pitches, or 1/11th of the circumference, suggesting a relationship between the circumferential extent of the inlet distortion and the apparent cut-off frequency perceived in the far field. A first-principles-based model of the generation of shock waves from a transonic rotor in nonuniform flow showed that the effects of nonuniform flow on acoustic wave propagation, which cannot be captured by the simplified model, are more dominant than those of inlet flow distortion on source noise. It demonstrated that nonlinear, coupled aerodynamic and aero-acoustic computations, such as those presented in this paper, are necessary to assess the propagation through nonuniform mean flow. A parametric study of serpentine inlet designs is underway to quantify these propagation effects. © 2013 American Society of Mechanical Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the major challenges in hig4h-speed fan stages used in compact, embedded propulsion systems is inlet distortion noise. A body-force-based approach for the prediction of multiple-pure-tone (MPT) noise was previously introduced and validated. In this paper, it is employed with the objective of quantifying the effects of non-uniform flow on the generation and propagation of MPT noise. First-of-their-kind back-to-back coupled aero-acoustic computations were carried out using the new approach for conventional and serpentine inlets. Both inlets delivered flow to the same NASA/GE R4 fan rotor at equal corrected mass flow rates. Although the source strength at the fan is increased by 45 dB in sound power level due to the non-uniform inflow, farfield noise for the serpentine inlet duct is increased on average by only 3.1 dBA overall sound pressure level in the forward arc. This is due to the redistribution of acoustic energy to frequencies below 11 times the shaft frequency and the apparent cut-off of tones at higher frequencies including blade-passing tones. The circumferential extent of the inlet swirl distortion at the fan was found to be 2 blade pitches, or 1/11th of the circumference, suggesting a relationship between the circumferential extent of the inlet distortion and the apparent cut-off frequency perceived in the far field. A first-principles-based model of the generation of shock waves from a transonic rotor in non-uniform flow showed that the effects of non-uniform flow on acoustic wave propagation, which cannot be captured by the simplified model, are more dominant than those of inlet flow distortion on source noise. It demonstrated that non-linear, coupled aerodynamic and aeroacoustic computations, such as those presented in this paper, are necessary to assess the propagation through non-uniform mean flow. A parametric study of serpentine inlet designs is underway to quantify these propagation effects. Copyright © 2011 by ASME.