972 resultados para Valence band splitting in Cu-In-Se compounds


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports on the optoelectronic properties and device application of hydrogenated amorphous silicon carbide (a-Si(1-x)C(x):H) films grown by plasma-enhanced chemical vapour deposition (PECVD). The films with an optical bandgap ranging from about 1.8 to 2.0 eV were deposited in hydrogen diluted silane-methane plasma by varying the radio frequency power. Several n-i-p structures with an intrinsic a-Si(1-x)C(x):H layer of different optical gaps were also fabricated. The optimized devices exhibited a diode ideality factor of 1.4-1.8, and a leakage current of 190-470 pA/cm(2) at -5 V. The density of deep defect states in a-Si(1-x)C(x):H was estimated from the transient dark current measurements and correlated with the optical bandgap and carbon content. Urbach energies for the valence band tail were also determined by analyzing the spectral response within sub-bandgap energy range. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we investigated structural, morphological, electrical, and optical properties from a set of Cu2ZnSnS4 thin films grown by sulfurization of metallic precursors deposited on soda lime glass substrates coated with or without molybdenum. X-ray diffraction and Raman spectroscopy measurements revealed the formation of single-phase Cu2ZnSnS4 thin films. A good crystallinity and grain compactness of the film was found by scanning electron microscopy. The grown films are poor in copper and rich in zinc, which is a composition close to that of the Cu2ZnSnS4 solar cells with best reported efficiency. Electrical conductivity and Hall effect measurements showed a high doping level and a strong compensation. The temperature dependence of the free hole concentration showed that the films are nondegenerate. Photoluminescence spectroscopy showed an asymmetric broadband emission. The experimental behavior with increasing excitation power or temperature cannot be explained by donor-acceptor pair transitions. A model of radiative recombination of an electron with a hole bound to an acceptor level, broadened by potential fluctuations of the valence-band edge, was proposed. An ionization energy for the acceptor level in the range 29–40 meV was estimated, and a value of 172 ±2 meV was obtained for the potential fluctuation in the valence-band edge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation to obtain the academic degree of Master in materials engineering submitted to the Faculty of science and engineering of Universidade Nova de Lisboa

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: In late-diagnosed transposition of the great arteries (TGA), the left ventricle (LV) involutes as it pumps against low resistance and needs retraining by applying a pulmonary artery band (PAB) in preparation for an arterial switch operation. We report our experience with a telemetrically adaptable band compared with classic banding. METHODS: Ten patients underwent retraining of the LV, 4 patients with an adaptable band and progressive weekly tightening of the band (group 1) and 6 patients with a traditional band (group 2). RESULTS: Mean weight and age at pulmonary band placement was 5.8 ± 2.36 kg and 11.7 ± 11.1 months for group 1 and 5.0 ± 2.3 kg and 6.4 ± 7.6 months for group 2. Time between palliation and switch procedure was 4.2 months in both groups. Group 1 showed an initial mean pulmonary gradient of 25.5 ± 4.43 mm Hg with a 5% closure of the device. The mean gradient increased with progressive closure to 63.5 ± 9.8 mm Hg at the time of the arterial switch operation. There were no reinterventions or deaths in this group. In group 2, the mean pulmonary gradient increased with growth from 49 ± 21.4 mm Hg to 68.4 ± 7.86 mm Hg at the time of the switch procedure. However, 4 of these patients required reoperations during retraining: 2 needed 1 reoperation and 2 needed 2 reoperations. Two patients died-1 after banding and 1 after the switch operation. CONCLUSIONS: Retraining of the LV by the adaptable device allows precise control of the tightening, avoids repetitive operations, and diminishes morbidity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the details of electronic transport related to the atomistic structure of silicon quantum dots embedded in a silicon dioxide matrix using ab initio calculations of the density of states. Several structural and composition features of quantum dots (QDs), such as diameter and amorphization level, are studied and correlated with transport under transfer Hamiltonian formalism. The current is strongly dependent on the QD density of states and on the conduction gap, both dependent on the dot diameter. In particular, as size increases, the available states inside the QD increase, while the QD band gap decreases due to relaxation of quantum confinement. Both effects contribute to increasing the current with the dot size. Besides, valence band offset between the band edges of the QD and the silica, and conduction band offset in a minor grade, increases with the QD diameter up to the theoretical value corresponding to planar heterostructures, thus decreasing the tunneling transmission probability and hence the total current. We discuss the influence of these parameters on electron and hole transport, evidencing a correlation between the electron (hole) barrier value and the electron (hole) current, and obtaining a general enhancement of the electron (hole) transport for larger (smaller) QD. Finally, we show that crystalline and amorphous structures exhibit enhanced probability of hole and electron current, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is dedicated to investigation of the energy spectrum of one of the most anisotropic narrow-gap semiconductors, CdSb. At the beginning of the present studies even the model of its energy band structure was not clear. Measurements of galvanomagnetic effects in wide temperature range (1.6 - 300 K) and in magnetic fields up to 30 T were chosen for clarifying of the energy spectrum in the intentionally undoped CdSb single crystals and doped with shallow impurities (In, Ag). Detection of the Shubnikov - de Haas oscillations allowed estimating the fundamental energy spectrum parameters. The shapes of the Fermi surfaces of electrons (sphere) and holes (ellipsoid), the number of the equivalent extremums for valence band (2) and their positions in the Brillouin zone were determined for the first time in this work. Also anisotropy coefficients, components of the tensor of effective masses of carriers, effective masses of density of states, nonparabolicity of the conduction and valence bands, g-factor and its anisotropy for n- and p-CdSb were estimated for the first time during these studies. All the results obtained are compared with the cyclotron resonance data and the corresponding theoretical calculations for p-CdSb. This is basic information for the analyses of the complex transport properties of CdSb and for working out the energy spectrum model of the shallow energy levels of defects and impurities in this semiconductor. It was found out existence of different mechanisms of hopping conductivity in the presence of metal - insulator transition induced by magnetic field in n- and p-CdSb. Quite unusual feature opened in CdSb is that different types of hopping conductivity may take place in the same crystal depending on temperature, magnetic field or even orientation of crystal in magnetic field. Transport properties of undoped p-CdSb samples show that the anisotropy of the resistivity in weak and strong magnetic fields is determined completely by the anisotropy of the effective mass of the holes. Temperature and magnetic field dependence of the Hall coefficient and magnetoresistance is attributed to presence of two groups of holes with different concentrations and mobilities. The analysis demonstrates that below Tcr ~ 20 K and down to ~ 6 - 7 K the low-mobile carriers are itinerant holes with energy E2 ≈ 6 meV. The high-mobile carriers, at all temperatures T < Tcr, are holes activated thermally from a deeper acceptor band to itinerant states of a shallower acceptor band with energy E1 ≈ 3 meV. Analysis of temperature dependences of mobilities confirms the existence of the heavy-hole band or a non-equivalent maximum and two equivalent maxima of the light-hole valence band. Galvanomagnetic effects in n-CdSb reveal the existence of two groups of carriers. These are the electrons of a single minimum in isotropic conduction band and the itinerant electrons of the narrow impurity band, having at low temperatures the energies above the bottom of the conduction band. It is found that above this impurity band exists second impurity band of only localized states and the energy of both impurity bands depend on temperature so that they sink into the band gap when temperature is increased. The bands are splitted by the spin, and in strong magnetic fields the energy difference between them decreases and redistribution of the electrons between the two impurity bands takes place. Mobility of the conduction band carriers demonstrates that scattering in n-CdSb at low temperatures is strongly anisotropic. This is because of domination from scattering on the neutral impurity centers and increasing of the contribution to mobility from scattering by acoustic phonons when temperature increases. Metallic conductivity in zero or weak magnetic field is changed to activated conductivity with increasing of magnetic field. This exhibits a metal-insulator transition (MIT) induced by the magnetic field due to shift of the Fermi level from the interval of extended states to that of the localized states of the electron spectrum near the edge of the conduction band. The Mott variablerange hopping conductivity is observed in the low- and high-field intervals on the insulating side of the MIT. The results yield information about the density of states, the localization radius of the resonant impurity band with completely localized states and about the donor band. In high magnetic fields this band is separated from the conduction band and lies below the resonant impurity bands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show both theoretical and experimental evidences of the appearance of ferromagnetism in MgO thin films. First-principles calculations allow predicting the possibility of the formation of a local moment in MgO, provided the existence of Mg vacancies which create holes on acceptor levels near the O 2p-dominated valence band. Magnetic measurements evidence of the existence of room-temperature ferromagnetism in MgO thin films. High-resolution transmission electron microscopy demonstrates the existence of cation vacancies in our samples. Finally, by applying the element specificity of the x-ray magnetic circular dichroism technique, we also demonstrate that the magnetic moments of the system arise from the spin polarization of the 2p electrons of oxygen atoms surrounding Mg vacancies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wine production in the northern Curitiba, Paraná, Brazil, specifically the communes of Colombo and Almirante Tamandaré, is based mainly on the utilization of Vitis labrusca grapes var. Bordô (Ives). Total sugar content, pH, and total acidity were analyzed in red wine samples from 2007 and 2008 vintages following official methods of analysis. Moreover, total phenolic, flavonoid, and tannin contents were analyzed by colorimetric methodologies and the antioxidant activity was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical methodology. Phenolic compounds were identified by high performance liquid chromatography. The total phenolic content of wine samples presented concentrations varying between 1582.35 and 2896.08 mg gallic acid.L-1 since the major part corresponds to flavonoid content. In these compounds' concentration range, a direct relationship between phenolic compounds content and levels of antioxidant activity was not observed. Among the identified phenolic compounds, chlorogenic, caffeic, and syringic acids were found to be the major components. Using three principal components, it was possible to explain 81.36% of total variance of the studied samples. Principal Components Analysis does not differentiate between vintages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One component that contribute to the flavor and aroma of chocolate are the polyphenols, which have received much attention due to their beneficial implications to human health. Besides bioactive action, polyphenols and methylxantines are responsible for astringency and bitterness in cocoa beans. Another important point is its drastic reduction during cocoa processing for chocolate production and the difference between cultivars. Thus, the present study aimed to evaluate the modifications in monomeric phenolic compounds and methylxanthines during fermentation of three cocoa cultivars grown in southern Bahia. Cocoa beans from three cultivars were fermented and sun dried and monomeric phenolic compounds and methylxantines were determinated. The results showed that each cultivar have different amounts of phenolic compounds and the behaviour of them is different during fermentation. The amount of methylxantines varied but there was not a pattern for methylxantines behavior during process. In addition a huge reduction in phenolic compounds could be observed after drying. Differently of phenolic compounds, methylxantines did not have great modification after sun drying. So, the differences observed in this study between cultivars, take to the conclusion that the compounds studied in those cocoa cultivars have different behavior during fermentation and drying, which consequently, give to these cultivars differences in sensory characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Point defects in metal oxides such as TiO2 are key to their applications in numerous technologies. The investigation of thermally induced nonstoichiometry in TiO2 is complicated by the difficulties in preparing and determining a desired degree of nonstoichiometry. We study controlled self-doping of TiO2 by adsorption of 1/8 and 1/16 monolayer Ti at the (110) surface using a combination of experimental and computational approaches to unravel the details of the adsorption process and the oxidation state of Ti. Upon adsorption of Ti, x-ray and ultraviolet photoemission spectroscopy (XPS and UPS) show formation of reduced Ti. Comparison of pure density functional theory (DFT) with experiment shows that pure DFT provides an inconsistent description of the electronic structure. To surmount this difficulty, we apply DFT corrected for on-site Coulomb interaction (DFT+U) to describe reduced Ti ions. The optimal value of U is 3 eV, determined from comparison of the computed Ti 3d electronic density of states with the UPS data. DFT+U and UPS show the appearance of a Ti 3d adsorbate-induced state at 1.3 eV above the valence band and 1.0 eV below the conduction band. The computations show that the adsorbed Ti atom is oxidized to Ti2+ and a fivefold coordinated surface Ti atom is reduced to Ti3+, while the remaining electron is distributed among other surface Ti atoms. The UPS data are best fitted with reduced Ti2+ and Ti3+ ions. These results demonstrate that the complexity of doped metal oxides is best understood with a combination of experiment and appropriate computations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hexadecanuclear copper mixed-valence complex 2 containing 10 Cu-II, centers and 6 Cu-I centers was isolated with N,O donor ligands. From the X-ray crystal structure, 2 was found to contain a centrosymmetric dimeric cation - each monomeric unit composed of eight copper centers. It displays a very broad and weak intervalence charge-transfer band around 1100 nm at room temperature in the solid state. Variable-temperature magnetic susceptibility measurements indicate an S = 1/2 ground state for half of 2, explicitly, each Cu-8 moiety has a g value around 2.26. Complex 2 was examined by NMR spectroscopy at room temperature in solution and by EPR at low temperature; the data indicates that the valence is delocalized in 2 at room temperature but localized at low temperature. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used synchrotron-based high-resolution X-ray photoelectron spectroscopy in combination with ab initio density functional theory calculations to investigate the characteristics of water and CO adsorption on the bimetallic Cu/Pt{110}-(2 x 1) surface at a Cu coverage near 0.5 ML. Cu fills the troughs of the reconstructed clean surface forming nanowires, which are stable up to 830 K. Their presence dramatically influences the adsorption of water and CO. Water adsorption changes from intact to partially dissociated while the desorption temperature of CO on this surface increases by up to 27 K with respect to the clean Pt{110} surface. Ab initio calculations and experimental valence band spectra reveal that the Cu 3d-band is narrowed and shifted upward with respect to bulk Cu surfaces. This and electron donation to surface Pt atoms cause the increase in the bond strength between CO and the Pt surface atoms. The pathway for water dissociation occurs via Cu surface atoms. The heat of adsorption of water bonding to Cu surface atoms was calculated to be 0.82 eV, which is significantly higher than on the clean Pt{110} surface; the activation energy for partial dissociation is 0.53 eV (not corrected for zero point energy).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four new trinuclear copper(II) complexes, [(CuL1)(3)(mu(3)-OH)](ClO4)(2)center dot H2O (1), [(CuL2)(3)(mu(3)-OH)](CIO4)(2) (2), [(CuL3)(3)-(mu(3)-OH)](ClO4)(4)center dot H2O (3), and [(CuL4)(3)(mu(3)-OH)](ClO4)(2)center dot H2O (4), where HL1 = 8-amino-4,7,7-trimethyl-5-azaoct-3-en-2-one, HL2 = 7-amino-4-methyl-5-azaoct-3-en-2-one, HL3 = 7(ethylamino)-4-methyl-5-azahept-3-en-2-one, and HL4 = 4-methyl-7-(methylamino)-5-azahept-3-en-2-one, have been derived from the four tridentate Schiff bases (HL1, HL2, HL3, and HL4) and structurally characterized by X-ray crystallography. For all compounds, the cationic part is trinuclear with a CU3OH core held by three carbonyl oxygen bridges between each pair of copper(II) atoms. The copper atoms are five-coordinate with a distorted square-pyramidal geometry; the equatorial plane consists of the bridging oxygen atom of the central OH group together with three atoms (N, N, O) from one ligand whereas an oxygen atom of a second ligand occupies the axial position. Magnetic measurements have been performed in the 2-300 K temperature range. The experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -J(S1S2+S2S3+S1S3) yielding as best-fit parameters: J = -66.7 and g = 2.19 for 1, J = -36.6 and g = 2.20 for 2, J = -24.5 and g = 2.20 for 3, and J = -14.9 and g = 2.05 for 4. EPR spectra at low temperature show the existence of spin frustration in complexes 3 and 4, but it has not been possible to carry out calculations of the antisymmetric exchange parameter, G, from magnetic data. In frozen methanolic solution, at 4 K, hyperfine splitting in all complexes and spin frustration in complex 4 seem to be confirmed. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The experiment asks whether constancy in hearing precedes or follows grouping. Listeners heard speech-like sounds comprising 8 auditory-filter shaped noise-bands that had temporal envelopes corresponding to those arising in these filters when a speech message is played. The „context‟ words in the message were “next you‟ll get _to click on”, into which a “sir” or “stir” test word was inserted. These test words were from an 11-step continuum that was formed by amplitude modulation. Listeners identified the test words appropriately and quite consistently, even though they had the „robotic‟ quality typical of this type of 8-band speech. The speech-like effects of these sounds appears to be a consequence of auditory grouping. Constancy was assessed by comparing the influence of room reflections on the test word across conditions where the context had either the same level of reflections, or where it had a much lower level. Constancy effects were obtained with these 8-band sounds, but only in „matched‟ conditions, where the room reflections were in the same bands in both the context and the test word. This was not the case in a comparison „mismatched‟ condition, and here, no constancy effects were found. It would appear that this type of constancy in hearing precedes the across-channel grouping whose effects are so apparent in these sounds. This result is discussed in terms of the ubiquity of grouping across different levels of representation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on theoretical arguments we propose a possible route for controlling the band-gap in the promising photovoltaic material CdIn2S4. Our ab initio calculations show that the experimental degree of inversion in this spinel (fraction of tetrahedral sites occupied by In) corresponds approximately to the equilibrium value given by the minimum of the theoretical inversion free energy at a typical synthesis temperature. Modification of this temperature, or of the cooling rate after synthesis, is then expected to change the inversion degree, which in turn sensitively tunes the electronic band-gap of the solid, as shown here by Heyd-Scuseria-Ernzerhof screened hybrid functional calculations.