926 resultados para Up-flow anaerobic sludge blanket reactors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of bovine rumen fluid inoculum during anaerobic treatment of the organic fraction of municipal solid waste (MSW) was studied in this work. The parameters adopted for evaluation were the biostabilization constant of total volatile solids (TVs) and the biostabilization time of the chemical oxygen demand (COD) applied to the reactors. The work was realized in four anaerobic batch reactors of 20 1 capacity each, during a period of 365 days. The proportions between MSW/inoculum loaded in the reactors were Reactor A (100%/0%), Reactor B (95%/5%), Reactor C (90%/10%) and Reactor D (85%/15%). The necessary time for biostabilization of half of the applied COD was 459, 347, 302 and 234 days and the average of methane concentration in the biogas produced was 3.6%, 13.0%, 25.0% and 42.6% for Reactors A, B, C and D, respectively. The data obtained affirm that the inoculum used substantially improved the performance of the process. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of substrate (glucose) concentration on the stability and yield of a continuous fermentative process that produces hydrogen was studied. Four anaerobic fluidized bed reactors (AFBRs) were operated with a hydraulic retention time (HRT) from 1 to 8 h and an influent glucose concentration from 2 to 25 gL(-1). The reactors were inoculated with thermally pre-treated anaerobic sludge and operated at a temperature of 30 degrees C with an influent pH around 5.5 and an effluent pH of about 3.5. The AFBRs with a HRT of 2 h and a feed strength of 2, 4, and 10 gL(-1) showed satisfactory H-2 production performance, but the reactor fed with 25 gL(-1) of glucose did not. The highest hydrogen yield value was obtained in the reactor with a glucose concentration of 2 gL(-1) when it was operated at a HRT of 2 h. The maximum hydrogen production rate value was achieved in the reactor with a HRT of 1 h and a feed strength of 10 gL(-1). The AFBRs operated with glucose concentrations of 2 and 4 gL(-1) produced greater amounts of acetic and butyric acids, while AFBRs with higher glucose concentrations produced a greater amount of solvents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated linear alkylbenzene sulfonate removal in an expanded granular sludge bed reactor with hydraulic retention times of 26 h and 32 h. Sludge bed and separator phase biomass were phylogenetically characterized (sequencing 16S rRNA) and quantified (most probable number) to determine the total anaerobic bacteria and methanogenic Archaea. The reactor was fed with a mineral medium supplemented with 14 mg l(-1) LAS, ethanol and methanol. The stage I-32 h consisted of biomass adaptation (without LAS influent) until reactor stability was achieved (COD removal >97%). In stage II-32 h, LAS removal was 74% due to factors such as dilution, degradation and adsorption. Higher HRT values increased the LAS removal (stage III: 26 h - 48% and stage IV: 32 h - 64%), probably due to increased contact time between the biomass and LAS. The clone libraries were different between samples from the sludge bed (Synergitetes and Proteobacteria) and the separator phase (Firmicutes and Proteobacteria) biomass. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A bench-scale treatability study was conducted on a high-strength wastewater from a chemical plant to develop an alternative for the existing waste stabilization pond treatment system. The objective of this study was to determine the treatability of the wastewater by the activated sludge process and, if treatable, to determine appropriate operating conditions, and to evaluate the degradability of bis(2-chloroethyl)ether (Chlorex) and benzene in the activated sludge system. Four 4-L Plexi-glass, complete mixing, continuous flow activated sludge reactors were operated in parallel under different operating conditions over a 6-month period. The operating conditions examined were hydraulic retention time (HRT), sludge retention time (SRT), nutrient supplement, and Chlorex/benzene spikes. Generally the activated sludge system treating high-strength wastewater was stable under large variations of organic loading and operating conditions. At an HRT of 2 days, more than 90% removal efficiency with good sludge settleability was achieved when the organic loading was less than 0.4 g BOD$\sb5$/g MLVSS/d or 0.8 g COD/g MLVSS/d. At least 20 days of SRT was required to maintain steady operation. Phosphorus addition enhanced the performance of the system especially during stressed operation. On the average, removals of benzene and Chlorex were 73-86% and 37-65%, respectively. In addition, the low-strength wastewater was treatable by activated sludge process, showing more than 90% BOD removal at a HRT of 0.5 days. In general, the sludge had poor settling characteristics. The aerated lagoon process treating high-strength wastewater also provided significant organic reduction, but did not produce an acceptable effluent concentration. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo desse projeto de pesquisa foi avaliar a redução do sulfato e promover a remoção do sulfeto, por via de conversão a enxofre elementar, em reatores combinados anaeróbio/microaerado. Para tanto foram utilizados três sistemas com objetivos específicos. A primeira configuração foi um reator anaeróbio de leito fixo e ordenado integrado a um reator microaerado com membrana externa (ABFSB-RME) com o qual se avaliou a influência do tempo de detenção hidráulica (TDH) e da presença de biomassa aderida na remoção do sulfeto. A segunda configuração avaliada foi um reator UASB com um reator microaerado de membrana helicoidal externa (UASB-RMHE), com o qual se avaliou a formação de biofilme no interior da membrana e a alteração do pH para a remoção do sulfeto em sua fase gasosa. A terceira configuração foi um reator anaeróbio de leito fixo e ordenado combinado a um reator microaerado com membrana helicoidal e submersa ao meio liquido (ABFSB-RMHS) com a finalidade de avaliar a remoção do sulfeto com aplicação de fluxo de ar no interior da membrana e avaliar a influência do TDH na eficiência de conversão do sulfeto. Os resultados indicam que a troca periódica das membranas tem influência na eficiência da conversão do sulfeto para o sistema ABFSB-RME. O sistema UASB-RMHE apresentou dados de remoção de sulfeto estáveis durante 35 dias, com remoção de até 90%, porém a retro lavagem da membrana é essencial para o aumento da vida útil do sistema A alteração do pH provocou a deslocamento de equilíbrio do sulfeto, e apresentou remoção do sulfeto no biogás de 98% para pH 7,5 e 50% para pH 7,0. O sistema ABFSB-RMHS propiciou remoção estável de sulfeto e a formação em camadas de enxofre elementar ao redor da membrana que se rompiam permitindo, assim, a sedimentação e recuperação do material sólido. Os resultados obtidos na pesquisa mostraram que os sistemas apresentam viabilidade e potencial no tratamento de águas ricas em compostos de enxofre e para a recuperação de enxofre elementar, além de apresentar versatilidade por meio de variáveis operacionais, com as quais se podem obter o controle e aperfeiçoamento do sistema.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O óleo lubrificante mineral é amplamente utilizado no cenário mundial no funcionamento de máquinas e motores. No entanto, o ciclo de vida deste petro-derivado resulta na geração de um resíduo (óleo lubrificante usado), o qual é nocivo ao meio ambiente quando não descartado adequadamente ou reciclado. No Brasil, apesar das normas que tratam especificamente do armazenamento, recolhimento e destino de óleo lubrificante usado, grande parte do mesmo ainda é despejado diretamente no meio ambiente, sem qualquer tratamento, sendo de grande importância estudos que visem o entendimento dos processos e o desenvolvimento de tecnologias de remediação de áreas contaminadas por esse resíduo. O objetivo geral do presente trabalho foi conduzir estudos de tratabilidade de solo arenoso contaminado experimentalmente com 5% (m m-1 seco) de óleo lubrificante usado, através de duas diferentes estratégias de biorremediação: bioestímulo e bioaumento. Foram conduzidos dois experimentos. No primeiro, foi avaliada a atividade microbiana aeróbia na biodegradação do OLU através do método respirométrico de Bartha. No segundo, foram montados três biorreatores de fase sólida simulando biopilhas estáticas com aeração forçada, cada um contendo 125 kg de solo e 5% (m m-1 seco) de óleo lubrificante automotivo usado, os quais receberam como tratamento: bioestímulo por ajuste de pH e umidade (BIOSca); bioestímulo por ajuste de pH e umidade associado ao bioaumento com a adição de composto maduro (BIOA1ca) ; e bioestímulo por ajuste de pH e umidade associado ao bioaumento com a adição de composto jovem (BIOA2ca). Foram também montados três biorreatores de bancada simulando biopilhas estáticas sem aeração forçada, cada um contendo 3 kg de solo e 5% (m m-1) do mesmo contaminante, sendo que o primeiro continha solo sem contaminação - CONTsa, o segundo, solo contaminado com ajuste de pH BIOSsa e o terceiro, solo contaminado com adição de 0,3% de azida sódica - ABIOsa. Os tratamentos foram avaliados pela remoção de hidrocarbonetos totais de petróleo (HTPs) e após 120 dias de experimento obteve-se remoções de HTPs de 84,75%, 99,99% e 99,99%, com BIOS, BIOA1 e BIOA2, respectivamente, demonstrando que a estratégia de bioestímulo associada ao bioaumento foram promissoras na remediação do solo contaminado pelo óleo lubrificante usado. Os tratamentos que receberam composto (BIOA1 e BIOA2) não apresentaram diferenças quanto à remoção de HTPs, evidenciando que a fase de maturação dos compostos não apresentou influência na eficiência do processo. No entanto, verificou-se uma eficiência nos tratamentos que receberam composto quando comparado ao tratamento sem adição de composto

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Embora seja crescente a utilização de reatores anaeróbios no tratamento de efluentes nas indústrias de refrigerantes, algumas características desta tecnologia ainda comprometem o desempenho, a estabilidade e a confiabilidade do processo, acarretando no aumento dos custos operacionais necessários para garantir a qualidade do efluente tratado, em adequação à todas as exigências legais. Dentre estas características destaca-se a vulnerabilidade do lodo anaeróbio a choques de produtos químicos. O presente trabalho propõe uma metodologia, baseada no método PDCA, com o objetivo de prevenir impactos negativos sobre o reator anaeróbio, através da identificação dos resíduos químicos gerados pela fábrica de refrigerantes, assim como a sua classificação, quanto a frequência de descartes e a severidade do impacto sobre a atividade dos microorganismos anaeróbios. O estudo mostrou, através da redução de DQO (Demanda Química de Oxigênio), quais produtos químicos apresentaram maior inibição sobre o lodo anaeróbio, possibilitando à fábrica direcionar ações de controle e contingência, além de pré-requisitos operacionais.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is potential to extract energy from wastewater in a number of ways, including: kinetic energy using micro-hydro systems, chemical energy through the incineration of sludge, biomass energy from the biogas produced after anaerobic sludge digestion, and thermal energy as heat. This paper considers the last option and asks how much heat could be recovered under UK climatic conditions and can this heat be used effectively by wastewater treatment plants to reduce their carbon footprint? Four wastewater treatment sites in southern England are investigated and the available heat that can be recovered at those sites is quantified. Issues relating to the environmental, economic and practical constraints on how energy can be realistically recovered and utilised are discussed .The results show there is a definite possibility for thermal energy recovery with potential savings at some sites of up to 35,000 tonnes of total long-cycle carbon equivalent (fossil fuel) emissions per year being achievable. The paper also shows that the financial feasibility of three options for using the heat (either for district heating, sludge drying or thermophilic heating in sludge digestion processes) is highly dependant upon the current shadow price of carbon. Without the inclusion of the cost of carbon, the financial feasibility is significantly limited. An environmental constraint for the allowable discharge temperature of effluent after heat-extraction was found to be the major limitation to the amount of energy available for recovery. The paper establishes the true potential of thermal energy recovery from wastewater in English conditions and the economic feasibility of reducing the carbon footprint of wastewater treatment operations using this approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphorus removal performance and a possible mechanism for the phosphorus removal from an eutrophic lake water were investigated using a medium-scale integrated vertical constructed wetland (combined vertical and reverse-vertical systems) from April, 11, 2001 to September, 28, 2004. Environmental factors affecting phosphorus removal and release profiles were monitored simultaneously under hydraulic loads from 400 to 2000 mm per day. The phosphorus removal rate varied with the environmental conditions. The removal rate for acidic influent water was superior to that for alkaline influent water. The substrate in the wetland chamber acted as a buffer to regulate the pH value of the water sample. As regards the water temperature, no significant differences were observed for the removal rate of total phosphorus (TP) and soluble reactive phosphorus (SRP) between low (lower than 15 degrees C) medium (16-25 degrees C) and high temperature (higher than 26 degrees C) conditions. Under a hydraulic load of 400 mm per day, the removal rate reached over 70%, the highest value achieved in this work. In addition, the highest hydraulic load of 2000 mm/d did not result in the lowest removal rate, as had been expected. After a two-year high hydraulic load test, the removal rate decreased significantly. Phosphorous release from the substrate was examined using a spatial sampling method. Depth profiles of total phosphorus and different states of phosphorus present in the substrate were recorded. This further study demonstrated that binding of phosphorus by iron and calcium might be another major factor in the removal and release of TP and SRP in this wetland system. The distribution of the speciated phosphorus showed that the amount of phosphorus captured in the substrate of the down-flow chamber was significantly higher than that captured in the up-flow chamber, suggesting that the up-flow chamber was the main source of phosphorus release in this constructed wetland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydrogen production from the organic fraction of municipal solid waste (OFMSW) by anaerobic mixed culture fermentation was investigated using batch experiments at 37 degrees C. Seven varieties of typical individual components of OFMSW including rice, potato, lettuce, lean meat, oil, fat and banyan leaves were selected to estimate the hydrogen production potential. Experimental results showed that the boiling treated anaerobic sludge was effective mixed inoculum for fermentative hydrogen production from OFMSW. Mechanism of fermentative hydrogen production indicates that, among the OFMSW, carbohydrates is the most optimal substrate for fermentative hydrogen production compared with proteins, lipids and lignocelluloses. This conclusion was also substantiated by experimental results of this study. The hydrogen production potentials of rice, potato and lettuce were 134 mL/g-VS, 106 mL/g-VS, and 50 mL/g-VS respectively. The hydrogen percentages of the total gas produced from rice, potato and lettuce were 57-70%, 41-55% and 37-67%. 2008 International Association for Hydrogen Energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

猪场废水COD浓度高、氨氮浓度高、悬浮物浓度高,已成为农村面源污染的主要来源,并严重威胁到农村饮用水安全。猪场废水氨氮浓度高、处理难度大,如何采用经济高效的方法,去除氨氮使其达到排放标准,一直是猪场废水处理中面临的重要难题。 厌氧氨氧化是近年受到国内外水处理研究者广泛关注的新型生物脱氮技术,具有不需要外加有机碳源、节省供氧量、降低能耗等优点。虽然国内外研究者对厌氧氨氧化过程的脱氮机理、厌氧氨氧化菌的生理生化特性等进行了多方面的研究,但已有的报道大多以模拟废水为研究对象,以猪场废水为研究对象的报道,在国内外文献中极少有报导。 本论文以猪场废水为主要研究对象,考察了猪场废水的亚硝化过程、厌氧氨氧化的启动过程,并对亚硝化和厌氧氨氧化联合用于猪场废水脱氮进行了探索。 1.论文首先研究了猪场废水的亚硝化过程,考察了废水水质和主要运行条件对亚硝化过程的影响。实验表明:(1)亚硝化阶段反应时间为8到10h时,出水中氨氮和亚硝酸盐浓度比可达到1:1~1:1.23,满足厌氧氨氧化反应对二者比例的要求;达到前述要求时,氨氮去除率达到58.3~65.6 %,亚硝化率在整个过程均保持在97 %以上,COD去除率在59.2~68.6 %;(2)曝气量(溶解氧)对亚硝化过程影响显著,随着曝气量增大,达到厌氧氨氧化要求的氨氮与亚硝酸盐氮浓度比例所需水力停留时间τ越短,pH出现明显下降的时间越短;(3)τ对应的pH在7.8~8.1之间,无需进行pH调节即可满足厌氧氨氧化反应对pH的要求;(4)氨氮和COD降解过程遵循一级反应动力学,氨氮和COD降解的速率常数分别为0.0656~0.0724 1/h和0.0491~0.0664 1/h。 2.在进行亚硝化过程研究的同时,以模拟废水为试验对象,进行厌氧氨氧化启动研究。以反硝化污泥和养殖厂储水池厌氧底泥的混合污泥作为接种污泥,历时大约100天,培育出具有厌氧氨氧化活性的污泥,氨氮和亚硝酸盐氮最高进水浓度分别为223.8 mg/L和171.4 mg/L,去除率最高分别达48%和41.5%,此时二者消耗比例为1.33:1。 3.在猪场废水的亚硝化研究完成和厌氧氨氧化过程初步启动成功后,在模拟废水中逐步加入猪场废水的亚硝化处理出水,逐步实现亚硝化和厌氧氨氧化的组合。亚硝化出水添加到厌氧反应器后,厌氧氨氧化反应仍可继续进行,且去除效率逐步提高。研究发现添加的亚硝化出水中携带的亚硝化细菌在厌氧氨氧化菌膜外层生长并累积,增加了厌氧氨氧化反应基质的传质阻力,妨碍了厌氧氨氧化效率的提高。 4.亚硝化-厌氧氨氧化实际工程应用探索中,生物接触氧化池可在有效去除废水中的有机物的同时实现亚硝化,出水中氨氮和亚硝酸盐比例平均为1.10,可满足后续厌氧氨氧化的要求;在适宜的进水浓度和温度下,ABR池出现了厌氧氨氧化启动的迹象;研究同时发现,水质的波动和气温的变化是工程中影响厌氧氨氧化菌活性的重要因素。 论文的主要创新点在于:(1)以猪场废水为研究对象,以实现厌氧氨氧化为目标,对亚硝化过程进行了比较详细的考察,获得了亚硝化出水满足厌氧氨氧化要求的工艺条件,通过对其COD和氨氮降解过程的考察,得出亚硝化阶段COD降解和氨氮去除的动力学模型;(2)对亚硝化-厌氧氨氧化处理猪场废水进行了探索,确立了影响其污染物去除率稳定的重要因素。 论文的上述研究成果,为厌氧氨氧化技术的实用性研究提供理论依据。 Piggery wastewater, which is characterized by high concentration of COD、ammonium and suspend substance, has become a most important source of non-point source pollution and also severely threats drinking water security in rural area. How to discharge piggery wastewater with the ammonium concentration meeting standard by economical and effective method? This is the most urgent problem in piggery wastewater treatment. As a new biological nitrogen removal technology, Anammox process has been paid more and more attention by researchers all over the world. Anammox has advantages of no need of organic carbon addition, low oxygen consumption and energy consumption. Plenty of investigations have been carried out to the mechanism, physiological and biochemical characteristic of bacteria about Anammox. Most of researches focused on synthetic wastewater, there is rare report about its application in piggery wastewater. In this paper,experimental studies were performed to investigate Sharon process in treatment of piggery wastewater,the start up process of Annammox using synthetic wastewater were studied, the feasibility of applying Sharon-Anammox process in the nitrogen removal of piggery wastewater was evaluated. 1. Sharon process of piggery wastewater was firstly investigated to analyze the effects of water quality and main running parameters, which meet the NH4+-N to NO2--N ratio requirement of successive Anammox. Results showed: (1)During Sharon Process,after 8~10 hours’ reaction the NH4+-N to NO2--N ratio in effluent reached 1:1.0~1:1.23, when the removal percentage of NH4+-N was 58.3~65.6 %, a semi-nitration rate of above 97 % was achieved during the process; meanwhile 59.2~68.6 % of the COD was also removed. (2)The aeration rate(oxygen) had obvious effect on the hydraulic retention time(τ) which met the NH4+-N to NO2--N ratio requirement of Anammox. As aeration rate increased, the hydraulic retention time(τ) was shortened. (3) The pH corresponding to τ was between 7.8 and 8.1, thus it needed no artificial adjustment. (4) The reduction of ammonia and COD followed the first-order reaction kinetics. The velocity constants of ammonia and COD were 0.0656~0.0724 1/h and 0.0491~0.0664 1/h, respectively. 2. The startup of Anammox process using the artificial wastewater was performed simultaneously with Sharon. The aim was to investigate the running parameters of Anammox and make foundation for the combination stage. By using the mixture of denitrifying sludge and anaerobic sludge in tank of the breeding factory, sludge of Anammox activity was cultivated in UASB after 100 days. The removal percentage of NH4+-N and NO2-N were up to 48% and 41.5%, respectively, when the NH4+-N and NO2-N influent concentration were 223.8 mg/L and 171.4 mg/L, respectively, the NH4+-N and NO2-N removal rate was 1.33:1. 3. After investigation of Sharon and startup of Anammox, effluent of Sharon process was added into the synthetic wastewater to combine Sharon and Anammox step by step. It took some time after the addition of Sharon effluent that Anammox reaction continued and the removal rate kept increasing. It indicated that nitrifying bacteria were carried by the Sharon effluent cumulated in the outer layer of Anammox. This enhanced transfer resistance of Anammox reaction and the increasing removal rate was restrained. 4. In the bio-contact oxidation pond of practical project, Sharon process were carried out successfully and organic compounds were removed effectively. An average NO2-N/ NH4+-N rate of 1:1.0 was achieved in the effluent, which met the requirement of successive Anammox. Under condition of suitable influent concentration and temperature, there was evidence that Anammox could start up in ABR. The variety of wastewater and temperature had great affects on Anammox activity in practical engineering. Innovation of this paper: (1) The Sharon process for treating piggery wastewater was discussed in details. Technological parameters that met requirement of Anammox were obtained. The dynamic models of COD and ammonium removal in the process were educed. (2) Sharon-Ananmmox for treatment of piggery wastewater was investigated, and the primary influencing factors was studied. This paper could be a theoretical consult for research of Anammox utility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acid, alkali, heat-shock, KNO3 and control pretreatment methods applied to anaerobic sludge were evaluated for their ability to selectively enrich the marine hydrogen-producing mixed microflora. Seawater culture medium was used as the substrate. The hydrogen yield of pretreated microflora was higher than that of the un-pretreated control (P < 0.05). Among the pretreatment methods studied, heat-shock pretreatment yielded the greatest hydrogen production, which was 14.6 times that of the control. When the effect of initial pH on hydrogen production of heat-shock pretreated samples was studied, hydrogen was produced over the entire pH range (pH 4-10). The hydrogen yield peaked at initial pH 8 (79 mL/g sucrose) and then steadily decreased as the initial pH increased. Sucrose consumption was high at neutral initial pH. During the process of hydrogen production, pH decreased gradually, which indicated that the acquired microflora consisted of acidogenic bacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Au cours des dernières décennies, l’intérêt pour la gazéification de biomasses a considérablement augmenté, notamment en raison de la grande efficacité de recouvrement énergétique de ce procédé par rapport aux autres procédés de génération de bioénergies. Les composants majoritaires du gaz de synthèse, le monoxyde de carbone (CO) et l’hydrogène (H2) peuvent entre autres servir de substrats à divers microorganismes qui peuvent produire une variété de molécules chimiques d’intérêts, ou encore produire des biocarburants, particulièrement le méthane. Il est donc important d'étudier les consortiums méthanogènes naturels qui, en syntrophie, serait en mesure de convertir le gaz de synthèse en carburants utiles. Cette étude évalue principalement le potentiel de méthanisation du CO par un consortium microbien issu d’un réacteur de type UASB, ainsi que les voies métaboliques impliquées dans cette conversion en conditions mésophiles. Des tests d’activité ont donc été réalisés avec la boue anaérobie du réacteur sous différentes pressions partielles de CO variant de 0.1 à 1,65 atm (0.09 à 1.31 mmol CO/L), en présence ou absence de certains inhibiteurs métaboliques spécifiques. Dès le départ, la boue non acclimatée au CO présente une activité carboxidotrophique relativement intéressante et permet une croissance sur le CO. Les tests effectués avec de l’acide 2- bromoethanesulfonique (BES) ou avec de la vancomycine démontrent que le CO est majoritairement consommé par les bactéries acétogènes avant d’être converti en méthane par les méthanogènes acétotrophes. De plus, un plus grand potentiel de méthanisation a pu être atteint sous une atmosphère constituée uniquement de CO en acclimatant auparavant la boue. Cette adaptation est caractérisée par un changement dans la population microbienne désormais dominée par les méthanogènes hydrogénotrophes. Ceci suggère un potentiel de production à large échelle de biométhane à partir du gaz de synthèse avec l’aide de biofilms anaérobies.