968 resultados para Unsteady Rayleigh Benard convection
Resumo:
This work studies the forced convection problem in internal flow between concentric annular ducts, with radial fins at the internal tube surface. The finned surface heat transfer is analyzed by two different approaches. In the first one, it is assumed one-dimensional heat conduction along the internal tube wall and fins, with the convection heat transfer coefficient being a known parameter, determined by an uncoupled solution. In the other way, named conjugated approach, the mathematical model (continuity, momentum, energy and K-epsilon equations) applied to tube annuli problem was numerically solved using finite element technique in a coupled formulation. At first time, a comparison was made between results obtained for the conjugated problem and experimental data, showing good agreement. Then, the temperature profiles under these two approaches were compared to each other to analyze the validity of the one-dimensional classical formulation that has been utilized in the heat exchanger design.
Resumo:
This paper deals with the use of the conjugate gradient method of function estimation for the simultaneous identification of two unknown boundary heat fluxes in parallel plate channels. The fluid flow is assumed to be laminar and hydrodynamically developed. Temperature measurements taken inside the channel are used in the inverse analysis. The accuracy of the present solution approach is examined by using simulated measurements containing random errors, for strict cases involving functional forms with discontinuities and sharp-corners for the unknown functions. Three different types of inverse problems are addressed in the paper, involving the estimation of: (i) Spatially dependent heat fluxes; (ii) Time-dependent heat fluxes; and (iii) Time and spatially dependent heat fluxes.
Resumo:
The Mathematica system (version 4.0) is employed in the solution of nonlinear difusion and convection-difusion problems, formulated as transient one-dimensional partial diferential equations with potential dependent equation coefficients. The Generalized Integral Transform Technique (GITT) is first implemented for the hybrid numerical-analytical solution of such classes of problems, through the symbolic integral transformation and elimination of the space variable, followed by the utilization of the built-in Mathematica function NDSolve for handling the resulting transformed ODE system. This approach ofers an error-controlled final numerical solution, through the simultaneous control of local errors in this reliable ODE's solver and of the proposed eigenfunction expansion truncation order. For covalidation purposes, the same built-in function NDSolve is employed in the direct solution of these partial diferential equations, as made possible by the algorithms implemented in Mathematica (versions 3.0 and up), based on application of the method of lines. Various numerical experiments are performed and relative merits of each approach are critically pointed out.
Resumo:
Non-linear functional representation of the aerodynamic response provides a convenient mathematical model for motion-induced unsteady transonic aerodynamic loads response, that accounts for both complex non-linearities and time-history effects. A recent development, based on functional approximation theory, has established a novel functional form; namely, the multi-layer functional. For a large class of non-linear dynamic systems, such multi-layer functional representations can be realised via finite impulse response (FIR) neural networks. Identification of an appropriate FIR neural network model is facilitated by means of a supervised training process in which a limited sample of system input-output data sets is presented to the temporal neural network. The present work describes a procedure for the systematic identification of parameterised neural network models of motion-induced unsteady transonic aerodynamic loads response. The training process is based on a conventional genetic algorithm to optimise the network architecture, combined with a simplified random search algorithm to update weight and bias values. Application of the scheme to representative transonic aerodynamic loads response data for a bidimensional airfoil executing finite-amplitude motion in transonic flow is used to demonstrate the feasibility of the approach. The approach is shown to furnish a satisfactory generalisation property to different motion histories over a range of Mach numbers in the transonic regime.
Resumo:
Nous analysons les oscillations torsionnelles se développant dans une simulation magnétohydrodynamique de la zone de convection solaire produisant des champs magnétiques de type solaire (champs axisymétriques subissant des inversions de polarités régulières sur des échelles temporelles décadaires). Puisque ces oscillations sont également similaires à celles observées dans le Soleil, nous analysons les dynamiques zonales aux grandes échelles. Nous séparons donc les termes aux grandes échelles (force de Coriolis exercée sur la circulation méridienne et les champs magnétiques aux grandes échelles) de ceux aux petites échelles (les stress de Reynolds et de Maxwell). En comparant les flux de moments cinétiques entre chacune des composantes, nous nous apercevons que les oscillations torsionnelles sont maintenues par l’écoulement méridien aux grandes échelles, lui même modulé par les champs magnétiques. Une analyse d’échange d’énergie confirme ce résultat, puisqu’elle montre que seul le terme comprenant la force de Coriolis injecte de l’énergie dans l’écoulement. Une analyse de la dynamique rotationnelle ayant lieu à la limite de la zone stable et de la zone de convection démontre que celle-ci est fortement modifiée lors du passage de la base des couches convectives à la base de la fine tachocline s’y formant juste en-dessous. Nous concluons par une discussion au niveau du mécanisme de saturation en amplitude dans la dynamo s’opérant dans la simulation ainsi que de la possibilité d’utiliser les oscillations torsionnelles comme précurseurs aux cycles solaires à venir.
Resumo:
L’utilisation d’une méthode d’assimilation de données, associée à un modèle de convection anélastique, nous permet la reconstruction des structures physiques d’une partie de la zone convective située en dessous d’une région solaire active. Les résultats obtenus nous informent sur les processus d’émergence des tubes de champ magnétique au travers de la zone convective ainsi que sur les mécanismes de formation des régions actives. Les données solaires utilisées proviennent de l’instrument MDI à bord de l’observatoire spatial SOHO et concernent principalement la région active AR9077 lors de l’ ́évènement du “jour de la Bastille”, le 14 juillet 2000. Cet évènement a conduit à l’avènement d’une éruption solaire, suivie par une importante éjection de masse coronale. Les données assimilées (magnétogrammes, cartes de températures et de vitesses verticales) couvrent une surface de 175 méga-mètres de coté acquises au niveau photosphérique. La méthode d’assimilation de données employée est le “coup de coude direct et rétrograde”, une méthode de relaxation Newtonienne similaire à la méthode “quasi-linéaire inverse 3D”. Elle présente l’originalité de ne pas nécessiter le calcul des équations adjointes au modèle physique. Aussi, la simplicité de la méthode est un avantage numérique conséquent. Notre étude montre au travers d’un test simple l’applicabilité de cette méthode à un modèle de convection utilisé dans le cadre de l’approximation anélastique. Nous montrons ainsi l’efficacité de cette méthode et révélons son potentiel pour l’assimilation de données solaires. Afin d’assurer l’unicité mathématique de la solution obtenue nous imposons une régularisation dans tout le domaine simulé. Nous montrons enfin que l’intérêt de la méthode employée ne se limite pas à la reconstruction des structures convectives, mais qu’elle permet également l’interpolation optimale des magnétogrammes photosphériques, voir même la prédiction de leur évolution temporelle.
Resumo:
The SST convection relation over tropical ocean and its impact on the South Asian monsoon is the first part of this thesis. Understanding the complicated relation between SST and convection is important for better prediction of the variability of the Indian monsoon in subseasonal, seasonal, interannual, and longer time scales. Improved global data sets from satellite scatterometer observations of SST, precipitation and refined reanalysis of global wind fields have made it possible to do a comprehensive study of the SST convection relation. Interaction of the monsoon and Indian ocean has been discussed. A coupled feedback process between SST and the Active-Break cycle of the Asian summer monsoon is a central theme of the thesis. The relation between SST and convection is very important in the field of numerical modeling of tropical rainfall. It is well known that models generally do very well simulating rainfall in areas of tropical convergence zones but are found unable to do satisfactory simulation in the monsoon areas. Thus in this study we critically examined the different mechanisms of generation of deep convection over these two distinct regions.The study reported in chapter 3 has shown that SST - convection relation over the warm pool regions of Indian and west Pacific oceans (monsoon areas) is in such a way that convection increases with SST in the SST range 26-29 C and for SST higher than 29-30 C convection decreases with increase of SST (it is called Waliser type). It is found that convection is induced in areas with SST gradients in the warm pool areas of Indian and west Pacific oceans. Once deep convection is initiated in the south of the warmest region of warm pool, the deep tropospheric heating by the latent heat released in the convective clouds produces strong low level wind fields (Low level Jet - LLJ) on the equatorward side of the warm pool and both the convection and wind are found to grow through a positive feedback process. Thus SST through its gradient acts only as an initiator of convection. The central region of the warm pool has very small SST gradients and large values of convection are associated with the cyclonic vorticity of the LLJ in the atmospheric boundary layer. The conditionally unstable atmosphere in the tropics is favorable for the production of deep convective clouds.
Resumo:
We have studied sea surface temperature (SST) anomalies over the Indian and Pacific Oceans (domain 25 °S to 25°N and 40 °E to 160 °W) during the three seasons following the Indian summer monsoon for wet monsoons and also for dry monsoons accompanied or not by El Ni˜no. A dry monsoon is followed by positive SST anomalies in the longitude belt 40 to 120 °E, negative anomalies in 120 to 160 °E and again positive anomalies east of 160 °E. In dry monsoons accompanied by El Ni˜no the anomalies have the same sign, but are much stronger. Wet monsoons have weak anomalies of opposite sign in all three of the longitude belts. Thus El Ni˜no and a dry monsoon have the same types of association with the Indian and Pacific Ocean SSTs. In the sector 40 to 120 °E SST anomalies first appear over the western part of the Indian Ocean (June to September) followed by the same sign of anomalies over its eastern part and China Sea (October to March). By March after a dry monsoon or El Ni˜no the Indian Ocean between 10 °N and 10 °S has a spatially large warm SST anomaly. Anomalies in deep convection tend to follow the SST anomalies, with warm SST anomalies producing positive convection anomalies around the seasonal location of the intertropical convergence zone
Resumo:
The application of nonlinear schemes like dual time stepping as preconditioners in matrix-free Newton-Krylov-solvers is considered and analyzed. We provide a novel formulation of the left preconditioned operator that says it is in fact linear in the matrix-free sense, but changes the Newton scheme. This allows to get some insight in the convergence properties of these schemes which are demonstrated through numerical results.
Resumo:
We consider numerical methods for the compressible time dependent Navier-Stokes equations, discussing the spatial discretization by Finite Volume and Discontinuous Galerkin methods, the time integration by time adaptive implicit Runge-Kutta and Rosenbrock methods and the solution of the appearing nonlinear and linear equations systems by preconditioned Jacobian-Free Newton-Krylov, as well as Multigrid methods. As applications, thermal Fluid structure interaction and other unsteady flow problems are considered. The text is aimed at both mathematicians and engineers.
Resumo:
In this paper a precorrected FFT-Fast Multipole Tree (pFFT-FMT) method for solving the potential flow around arbitrary three dimensional bodies is presented. The method takes advantage of the efficiency of the pFFT and FMT algorithms to facilitate more demanding computations such as automatic wake generation and hands-off steady and unsteady aerodynamic simulations. The velocity potential on the body surfaces and in the domain is determined using a pFFT Boundary Element Method (BEM) approach based on the Green’s Theorem Boundary Integral Equation. The vorticity trailing all lifting surfaces in the domain is represented using a Fast Multipole Tree, time advected, vortex participle method. Some simple steady state flow solutions are performed to demonstrate the basic capabilities of the solver. Although this paper focuses primarily on steady state solutions, it should be noted that this approach is designed to be a robust and efficient unsteady potential flow simulation tool, useful for rapid computational prototyping.
Resumo:
Es repassa la formulació de la Teoria de Pertorbacions en notació matricial i s'exposa una aplicació senzilla com és la solució del problema de la partícula sotmesa a un potencial d'atracció dins la caixa quàntica monodimensional
Resumo:
The Kelvin Helmholtz (KH) problem, with zero stratification, is examined as a limiting case of the Rayleigh model of a single shear layer whose width tends to zero. The transition of the Rayleigh modal dispersion relation to the KH one, as well as the disappearance of the supermodal transient growth in the KH limit, are both rationalized from the counterpropagating Rossby wave perspective.