999 resultados para Unmixing Hyperspectral Data
Resumo:
This airborne hyperspectral (19 bands) image data of Heron Reef, Great Barrier Reef, Australia is derived from Compact Airborne Spectrographic Imager (CASI) data acquired on 1st and 3rd of July 2002, latitude -23.45, longitude 151.92. Processing and correction to at-surface data was completed by Karen Joyce (Joyce, 2004). Raw imagery consisted several images corresponding to the number of flight paths taken to cover the entire Heron Reef. Spatial resolution is one meter. Radiometric corrections converted the at-sensor digital number values to at surface spectral radiance values using sensor specific calibration coefficients and CSIRO's c-WomBat-c atmospheric correction software. Geometric corrections were done using field collected coordinates of features identified in the image. Projection used was Universal Transverse Mercator Zone 56 South and Datum used was WGS 84. Image data is in TIFF format.
Resumo:
Conventional reflectance spectroscopy (NIRS) and hyperspectral imaging (HI) in the near-infrared region (1000-2500 nm) are evaluated and compared, using, as the case study, the determination of relevant properties related to the quality of natural rubber. Mooney viscosity (MV) and plasticity indices (PI) (PI0 - original plasticity, PI30 - plasticity after accelerated aging, and PRI - the plasticity retention index after accelerated aging) of rubber were determined using multivariate regression models. Two hundred and eighty six samples of rubber were measured using conventional and hyperspectral near-infrared imaging reflectance instruments in the range of 1000-2500 nm. The sample set was split into regression (n = 191) and external validation (n = 95) sub-sets. Three instruments were employed for data acquisition: a line scanning hyperspectral camera and two conventional FT-NIR spectrometers. Sample heterogeneity was evaluated using hyperspectral images obtained with a resolution of 150 × 150 μm and principal component analysis. The probed sample area (5 cm(2); 24,000 pixels) to achieve representativeness was found to be equivalent to the average of 6 spectra for a 1 cm diameter probing circular window of one FT-NIR instrument. The other spectrophotometer can probe the whole sample in only one measurement. The results show that the rubber properties can be determined with very similar accuracy and precision by Partial Least Square (PLS) regression models regardless of whether HI-NIR or conventional FT-NIR produce the spectral datasets. The best Root Mean Square Errors of Prediction (RMSEPs) of external validation for MV, PI0, PI30, and PRI were 4.3, 1.8, 3.4, and 5.3%, respectively. Though the quantitative results provided by the three instruments can be considered equivalent, the hyperspectral imaging instrument presents a number of advantages, being about 6 times faster than conventional bulk spectrometers, producing robust spectral data by ensuring sample representativeness, and minimizing the effect of the presence of contaminants.