957 resultados para Uniform Rotundity In Every Direction
Resumo:
The perceived displacement of motion-defined contours in peripheral vision was examined in four experiments. In Experiment 1, in line with Ramachandran and Anstis' finding [Ramachandran, V. S., & Anstis, S. M. (1990). Illusory displacement of equiluminous kinetic edges. Perception, 19, 611-616], the border between a field of drifting dots and a static dot pattern was apparently displaced in the same direction as the movement of the dots. When a uniform dark area was substituted for the static dots, a similar displacement was found, but this was smaller and statistically insignificant. In Experiment 2, the border between two fields of dots moving in opposite directions was displaced in the direction of motion of the dots in the more eccentric field, so that the location of a boundary defined by a diverging pattern is perceived as more eccentric, and that defined by a converging as less eccentric. Two explanations for this effect (that the displacement reflects a greater weight given to the more eccentric motion, or that the region containing stronger centripetal motion components expands perceptually into that containing centrifugal motion) were tested in Experiment 3, by varying the velocity of the more eccentric region. The results favoured the explanation based on the expansion of an area in centripetal motion. Experiment 4 showed that the difference in perceived location was unlikely to be due to differences in the discriminability of contours in diverging and converging pattems, and confirmed that this effect is due to a difference between centripetal and centrifugal motion rather than motion components in other directions. Our result provides new evidence for a bias towards centripetal motion in human vision, and suggests that the direction of motion-induced displacement of edges is not always in the direction of an adjacent moving pattern. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The planning of semi-autonomous vehicles in traffic scenarios is a relatively new problem that contributes towards the goal of making road travel by vehicles free of human drivers. An algorithm needs to ensure optimal real time planning of multiple vehicles (moving in either direction along a road), in the presence of a complex obstacle network. Unlike other approaches, here we assume that speed lanes are not present and that different lanes do not need to be maintained for inbound and outbound traffic. Our basic hypothesis is to carry forward the planning task to ensure that a sufficient distance is maintained by each vehicle from all other vehicles, obstacles and road boundaries. We present here a 4-layer planning algorithm that consists of road selection (for selecting the individual roads of traversal to reach the goal), pathway selection (a strategy to avoid and/or overtake obstacles, road diversions and other blockages), pathway distribution (to select the position of a vehicle at every instance of time in a pathway), and trajectory generation (for generating a curve, smooth enough, to allow for the maximum possible speed). Cooperation between vehicles is handled separately at the different levels, the aim being to maximize the separation between vehicles. Simulated results exhibit behaviours of smooth, efficient and safe driving of vehicles in multiple scenarios; along with typical vehicle behaviours including following and overtaking.
Resumo:
In this work we describe a two-dimensional computer simulation of magnetic field enhanced plasma immersion implantation system. Negative bias voltage of 10.0 kV is applied to a cylindrical target located on the axis of a grounded vacuum chamber filled with uniform nitrogen plasma. A pair of external coils creates a static magnetic field with main vector component along the axial direction. Thus, a system of crossed ExB field is generated inside the vessel forcing plasma electrons to rotate in azimuthal direction. In addition, the axial variation of the magnetic field intensity produces magnetic mirror effect that enables axial particle confinement. It is found that high-density plasma regions are formed around the target due to intense background gas ionization by the trapped electrons. Effect of the magnetic field on the sheath dynamics and the implantation current density of the PIII system is investigated. By changing the magnetic field axial profile (varying coils separation) an enhancement of about 30% of the retained dose can be achieved. The results of the simulation show that the magnetic mirror configuration brings additional benefits to the PIII process, permitting more precise control of the implanted dose.
Resumo:
The misfit between prostheses and implants is a clinical reality, but the level that can be accepted without causing mechanical or biologic problem is not well defined. This study investigates the effect of different levels of unilateral angular misfit prostheses in the prosthesis/implant/retaining screw system and in the surrounding bone using finite element analysis. Four models of a two-dimensional finite element were constructed: group I (control), prosthesis that fit the implant; groups 2 to 4, prostheses with unilateral angular misfit of 50, 100, and 200 mu m, respectively. A load of 133 N was applied with a 30-degree angulation and off-axis at 2 mm from the long axis of the implant at the opposite direction of misfit on the models. Taking into account the increase of the angular misfit, the stress maps showed a gradual increase of prosthesis stress and uniform stress in the implant and trabecular bone. Concerning the displacement, an inclination of the system due to loading and misfit was observed. The decrease of the unilateral contact between prosthesis and implant leads to the displacement of the entire system, and distribution and magnitude alterations of the stress also occurred.
Resumo:
1. Morphology and sedimentation The deepest parts of the Persian Gulf lie off the Iranian coast. Several swells separate the Persian Gulf into the Western Basin, the Central Basin and the Strait of Hormuz, which leads without noticeable morphological interruption onto the Biaban Shelf; the latter gradually drops off towards the continental slope, which itself has a strongly subdivided morphology. The sediment distribution in the Western Basin runs parallel to the basin's axis to a depth of 50 -60 m. This is caused by the shallow and uniform slope of the Iranian coast into the Western Basin, by clear exposure of the area to the Shamal-Winds and by tidal currents parallel to the basin's axis. Most other parameters also show isolines parallel to the coast line. Data from the sediment analyses show a net transport which extends out along the Central Swell: coarse fraction > 63 µ, total carbonate content, carbonate in fine fractions < 2 µ, 2-6 µ and 20-63 µ, calcite-aragonite ratios in the fine fractions 2-6 µ and 20-63 µ and quartz-dolomite ratios in fine fraction 2-6 µ. At least the uppermost 10-40 m of this sediment is late Holocene. This implies sedimentation rates of several meters per 1000 years. The slope from the Iranian coast into the Central Basin (max. depth 100 m) is generally steeper, with interspersed islands and flats. Both facts tend to disturb a sediment dustribition parallel to the basin's axis over extensive areas and may preclude any such trend from being detected by the methods and sample net used. The spatial distribution of the coarse fraction, however, seems to indicate sediment transport at greater water depths perpendicular to the basin's long axis and along the steepest gradients well into the Central Basin. The flats of the Central Basin have a sediment cover distinctly different from those of the deeper basin areas. Characteristic parameters are the extremely high percentages of coarse grained sediments, total content of carbonate CO2 over 40, low total organic carbon content, (however values are high if calculated on the basis of the < 63 µ fraction), low total N-content, and low C/N ratios. These characteristics probably result from the absence of any terrigenous material being brought in as well as from exposure to wave action. Finest terrigenous material is deposited in the innermost protected part of the Hormuz Bay. In the deep channel cut into the Biaban Shelf which carries the Persian Gulf out-flow water to the Indian Ocean, no fine grained sediment is deposited as shown by grain size data. 2. Geographic settings and sedimentation Flat lands border the Arabian coast of the Persian Gulf except for the Oman region. The high and steep Zagros Mountains form the Iranian coastline. Flat topography in combination with generally low precipitation precludes fluviatile sediment being added from the South. Inorganic and biogenic carbonates accumulating under low sedimentation rates are dominant on the shallow Arabic Shelf and the slopes into the Western and Central Basins. The fluviatile sediment brought in from the Iranian side, however decisively determine the composition of the Holocene sediment cover in the Persian Gulf and on the Biaban Shelf. Holocene sediments extend 20-30 km seaward into the Western Basin and about 25 km on to the Biaban Shelf. As mentioned before, sedimentation rates are of several meters/1000 years. The rocks exposed in the hinterland influence the sediments. According to our data the Redbeds of the Zagros Mountains determine the colour of the very fine grained sediments near the Iranian Coast of the Persian Gulf. To the West of Hormuz, addition of carbonate minerals is particularly high. Dolomite and protodolomite, deposited only in this area, as well as palygorskite, have proven to be excellent trace minerals. To the East of Hormuz, the supply of terrigenous carbonates is considerably lower. Clay minerals appear to bring in inorganically bound nitrogen thus lowering the C/N ratio in these sediments especially off river mouths. 3. Climate and sedimentation The Persian Gulf is located in a climatically arid region. This directly affects sedimentation through increased wind action and the infrequent but heavy rainfalls which cause flash floods. Such flash floods could be responsible for transporting sedheats into the Central Basin in a direction perpendicular to the Gulf's axis. Eolian influx is difficult to asses from our data; however, it probably is of minor importance from the Iranian side and may add, at the most, a few centimeters of fine sediment per 1000 years. 4. Hydrology and sedimentation High water temperatures favor inorganic carbonate precipitation in southern margin of the Gulf, and probably on the flats, as well as biogenic carbonate production in general. High evaporation plus low water inflow through rivers and precipitation cause a circulation pattern that is typical for epicontinental seas within the arid climate region. Surface water flows in from the adjoining ocean, in this case the Indian Ocean and sinks to the bottom of the Persian Gulf mainly in the northern part of the Western Basin, on the "Mesopotamischer Flachschelf" ard probably in the area of the "Arabischer Flachschelf". This sinking water continually rejuvenates the bottom out-flow water. The inflowing surface water from the Indian Ocean brings organic matter into the Persian Gulf, additional nutrients are added by the "fresh" upwelling waters of the Gulf of Oman. Both nutrients and organic matter diminish very rapidly as the water moves into the Persian Gulf. This depletion of nutrients and organic matter is the reasonfor generally low organic carbon contents of the Persian Gulf sediments. The Central Swell represents a distinct boundary, to the west of which the organic carbon content are lower than to the east when sediment samples of similar grain size distribution are compared. The outflow carries well oxygenated water over the bottom of the Persian Gulf and the resulting oxidation further decreases the content of organic matter. In the Masandam-Channel and in the Biaban-Shelf channel, the outflowing water prevents deposition of fine material and transports sediment particles well beyond the shelf margin. The outflowing water remains at a depth of 200-300 m depending on its density and releases ist suspending sediment load to the ocean floor, irrespectative of the bottom morphology. This is reflected in several parameters in which the sediments from beneath the outflow differ from nearby sediments not affected by the outflowing water. High carbonate content of total samples and of the individual size fraction as well as high aragonite and dolomite contents of individual size fractions characterize the sediment beneath the outflowing water. The tidal currents, which avt more or less parallel to the Gulf's axis, favor mixing of the water masses, they rework sediments at velocities reported here. This fact enlarges to a certain degree the extent of our interfaces which are based on only a few sample points (Persian Gulf and Biaban Shelf one sample per 620 km**2, continental slope one sample per 1000 km**2). The water on the continental slope shows and oxygen minimum at 200-1200 m which favors preservation of organically-bound carbon in the sediment. The low pH-values may even permit dissolution of carbonate minerals.
Resumo:
Following the recent ‘third plenum’ in China, CEPS Director Daniel Gros finds that China has reached a difficult crossroads in terms of making the necessary reforms that will foster continued growth and productivity. Continuing in the direction that so far has been followed with astounding success, namely giving the market a greater role and opening to the rest of the world, might no longer be sufficient. He points out, for example, that combating pollution requires more state intervention, not less. And similarly, strengthening a huge, potentially unstable, financial system requires stronger oversight and some continuing separation from the global financial system. Navigating this change in the right direction will be crucial not only for China, but also for the global economy.
Resumo:
To investigate the control mechanisms used in adapting to position-dependent forces, subjects performed 150 horizontal reaching movements over 25 cm in the presence of a position-dependent parabolic force field (PF). The PF acted only over the first 10 cm of the movement. On every fifth trial, a virtual mechanical guide (double wall) constrained subjects to move along a straight-line path between the start and target positions. Its purpose was to register lateral force to track formation of an internal model of the force field, and to look for evidence of possible alternative adaptive strategies. The force field produced a force to the right, which initially caused subjects to deviate in that direction. They reacted by producing deviations to the left, into the force field, as early as the second trial. Further adaptation resulted in rapid exponential reduction of kinematic error in the latter portion of the movement, where the greatest perturbation to the handpath was initially observed, whereas there was little modification of the handpath in the region where the PF was active. Significant force directed to counteract the PF was measured on the first guided trial, and was modified during the first half of the learning set. The total force impulse in the region of the PF increased throughout the learning trials, but it always remained less than that produced by the PF. The force profile did not resemble a mirror image of the PF in that it tended to be more trapezoidal than parabolic in shape. As in previous studies of force-field adaptation, we found that changes in muscle activation involved a general increase in the activity of all muscles, which increased arm stiffness, and selectively-greater increases in the activation of muscles which counteracted the PF. With training, activation was exponentially reduced, albeit more slowly than kinematic error. Progressive changes in kinematics and EMG occurred predominantly in the region of the workspace beyond the force field. We suggest that constraints on muscle mechanics limit the ability of the central nervous system to employ an inverse dynamics model to nullify impulse-like forces by generating mirror-image forces. Consequently, subjects adopted a strategy of slightly overcompensating for the first half of the force field, then allowing the force field to push them in the opposite direction. Muscle activity patterns in the region beyond the boundary of the force field were subsequently adjusted because of the relatively-slow response of the second-order mechanics of muscle impedance to the force impulse.
Resumo:
Packed beds have many industrial applications and are increasingly used in the process industries due to their low pressure drop. With the introduction of more efficient packings, novel packing materials (i.e. adsorbents) and new applications (i.e. flue gas desulphurisation); the aspect ratio (height to diameter) of such beds is decreasing. Obtaining uniform gas distribution in such beds is of crucial importance in minimising operating costs and optimising plant performance. Since to some extent a packed bed acts as its own distributor the importance of obtaining uniform gas distribution has increased as aspect ratios (bed height to diameter) decrease. There is no rigorous design method for distributors due to a limited understanding of the fluid flow phenomena and in particular of the effect of the bed base / free fluid interface. This study is based on a combined theoretical and modelling approach. The starting point is the Ergun Equation which is used to determine the pressure drop over a bed where the flow is uni-directional. This equation has been applied in a vectorial form so it can be applied to maldistributed and multi-directional flows and has been realised in the Computational Fluid Dynamics code PHOENICS. The use of this equation and its application has been verified by modelling experimental measurements of maldistributed gas flows, where there is no free fluid / bed base interface. A novel, two-dimensional experiment has been designed to investigate the fluid mechanics of maldistributed gas flows in shallow packed beds. The flow through the outlet of the duct below the bed can be controlled, permitting a rigorous investigation. The results from this apparatus provide useful insights into the fluid mechanics of flow in and around a shallow packed bed and show the critical effect of the bed base. The PHOENICS/vectorial Ergun Equation model has been adapted to model this situation. The model has been improved by the inclusion of spatial voidage variations in the bed and the prescription of a novel bed base boundary condition. This boundary condition is based on the logarithmic law for velocities near walls without restricting the velocity at the bed base to zero and is applied within a turbulence model. The flow in a curved bed section, which is three-dimensional in nature, is examined experimentally. The effect of the walls and the changes in gas direction on the gas flow are shown to be particularly significant. As before, the relative amounts of gas flowing through the bed and duct outlet can be controlled. The model and improved understanding of the underlying physical phenomena form the basis for the development of new distributors and rigorous design methods for them.
Resumo:
To determine the spatial pattern of ß-amyloid (Aß) deposition throughout the temporal lobe in Alzheimer's disease (AD). Methods: Sections of the complete temporal lobe from six cases of sporadic AD were immunolabelled with antibody against Aß. Fourier (spectral) analysis was used to identify sinusoidal patterns in the fluctuation of Aß deposition in a direction parallel to the pia mater or alveus. Results: Significant sinusoidal fluctuations in density were evident in 81/99 (82%) analyses. In 64% of analyses, two frequency components were present with density peaks of Aß deposits repeating every 500–1000 µm and at distances greater than 1000 µm. In 25% of analyses, three or more frequency components were present. The estimated period or wavelength (number of sample units to complete one full cycle) of the first and second frequency components did not vary significantly between gyri of the temporal lobe, but there was evidence that the fluctuations of the classic deposits had longer periods than the diffuse and primitive deposits. Conclusions: (i) Aß deposits exhibit complex sinusoidal fluctuations in density in the temporal lobe in AD; (ii) fluctuations in Aß deposition may reflect the formation of Aß deposits in relation to the modular and vascular structure of the cortex; and (iii) Fourier analysis may be a useful statistical method for studying the patterns of Aß deposition both in AD and in transgenic models of disease.
Resumo:
Recent advances in electronic and computer technologies lead to wide-spread deployment of wireless sensor networks (WSNs). WSNs have wide range applications, including military sensing and tracking, environment monitoring, smart environments, etc. Many WSNs have mission-critical tasks, such as military applications. Thus, the security issues in WSNs are kept in the foreground among research areas. Compared with other wireless networks, such as ad hoc, and cellular networks, security in WSNs is more complicated due to the constrained capabilities of sensor nodes and the properties of the deployment, such as large scale, hostile environment, etc. Security issues mainly come from attacks. In general, the attacks in WSNs can be classified as external attacks and internal attacks. In an external attack, the attacking node is not an authorized participant of the sensor network. Cryptography and other security methods can prevent some of external attacks. However, node compromise, the major and unique problem that leads to internal attacks, will eliminate all the efforts to prevent attacks. Knowing the probability of node compromise will help systems to detect and defend against it. Although there are some approaches that can be used to detect and defend against node compromise, few of them have the ability to estimate the probability of node compromise. Hence, we develop basic uniform, basic gradient, intelligent uniform and intelligent gradient models for node compromise distribution in order to adapt to different application environments by using probability theory. These models allow systems to estimate the probability of node compromise. Applying these models in system security designs can improve system security and decrease the overheads nearly in every security area. Moreover, based on these models, we design a novel secure routing algorithm to defend against the routing security issue that comes from the nodes that have already been compromised but have not been detected by the node compromise detecting mechanism. The routing paths in our algorithm detour those nodes which have already been detected as compromised nodes or have larger probabilities of being compromised. Simulation results show that our algorithm is effective to protect routing paths from node compromise whether detected or not.
Resumo:
This series of 5 single-subject studies used the operant conditioning paradigm to investigate, within the two-way influence process, how (a) contingent infant attention can reinforce maternal verbal behaviors during a period of mother-infant interaction and under subsequent experimental manipulation. Differential reinforcement was used to determine if it is possible that an infant attending to the mother (denoted by head-turns towards the image of the mother plus eye contact) increases (reinforces) the mother's verbal response (to a cue from the infant) upon which the infant behavior is contingent. There was also (b) an evaluation during the contrived parent-infant interaction for concurrent operant learning of infant vocal behavior via contingent verbal responding (reinforcement) implemented by the mother. Further, it was noted (c) whether or not the mother reported being aware that her responses were influenced by the infant's behavior. Findings showed: the operant conditioning of the maternal verbal behaviors were reinforced by contingent infant attention; and the operant conditioning of infant vocalizations was reinforced by contingent maternal verbal behaviors. No parent reported (1) being aware of the increase in their verbal response reinforced during operant conditioning of parental behavior nor a decrease in those responses during the DRA reversal phase, or (2) noticing a contingency between infant's and mother's response. By binomial 1-tail tests, the verbal-behavior patterns of the 5 mothers were conditioned by infant reinforcement (p < 0.02) and, concurrently, the vocal-response patterns of the 5 infants were conditioned by maternal reinforcement (p < 0.02). A program of systematic empirical research on the determinants of concurrent conditioning within mother-child interaction may provide a way to evaluate the differential effectiveness of interventions aimed at improving parent-child interactions. The work conducted in the present study is one step in this direction. ^
Resumo:
Recent advances in electronic and computer technologies lead to wide-spread deployment of wireless sensor networks (WSNs). WSNs have wide range applications, including military sensing and tracking, environment monitoring, smart environments, etc. Many WSNs have mission-critical tasks, such as military applications. Thus, the security issues in WSNs are kept in the foreground among research areas. Compared with other wireless networks, such as ad hoc, and cellular networks, security in WSNs is more complicated due to the constrained capabilities of sensor nodes and the properties of the deployment, such as large scale, hostile environment, etc. Security issues mainly come from attacks. In general, the attacks in WSNs can be classified as external attacks and internal attacks. In an external attack, the attacking node is not an authorized participant of the sensor network. Cryptography and other security methods can prevent some of external attacks. However, node compromise, the major and unique problem that leads to internal attacks, will eliminate all the efforts to prevent attacks. Knowing the probability of node compromise will help systems to detect and defend against it. Although there are some approaches that can be used to detect and defend against node compromise, few of them have the ability to estimate the probability of node compromise. Hence, we develop basic uniform, basic gradient, intelligent uniform and intelligent gradient models for node compromise distribution in order to adapt to different application environments by using probability theory. These models allow systems to estimate the probability of node compromise. Applying these models in system security designs can improve system security and decrease the overheads nearly in every security area. Moreover, based on these models, we design a novel secure routing algorithm to defend against the routing security issue that comes from the nodes that have already been compromised but have not been detected by the node compromise detecting mechanism. The routing paths in our algorithm detour those nodes which have already been detected as compromised nodes or have larger probabilities of being compromised. Simulation results show that our algorithm is effective to protect routing paths from node compromise whether detected or not.
Resumo:
Sea lamprey (Petromyzon marinus) and allis shad (Alosa alosa) have been fished for centuries in mainland Portugal during their upstream spawning migration. Here, biological information is compared for the two species and governance and monitoring data from Portugal are reviewed to propose species-specific courses of future action. Despite a national fisheries legislation common for the two species and the designation of Sites of Community Interest (SCIs) for both, the current conservation needs for sea lamprey and allis shad in Portugal are considered to be distinct. For sea lamprey, conservation priorities must focus on planning fisheries managementinarticulationwithhabitatrecoverytoguaranteecost-effective monitoring andsustainablelong-termexploitationthataddsvaluetolocalcommunitiesandpaysdue taxation. Onthecontrary,conservationconcernsandactionsforallisshadmuststrengthenandbemore proactive in the reduction of fishing mortality, both target (in rivers) and by catch (at sea).There is a need to make better use of the opportunities inherent in the Habitats Directive and the possibility to define specific management actions within SCIs. To this effect, it will be necessary to revise existing legislation and guarantee better articulation between jurisdictional authorities. A good example in this direction is the articulation already established in the river Mondego where habitat restoration, fish monitoring and effective species-specific fisheries control measures have been taken and implemented in recent years by a large institutional partnership.
Resumo:
Sugarcane is a monocot plant that accumulates sucrose to levels of up to 50% of dry weight in the stalk. The mechanisms that are involved in sucrose accumulation in sugarcane are not well understood, and little is known with regard to factors that control the extent of sucrose storage in the stalks. UDP-glucose pyrophosphorylase (UGPase; EC 2.7.7.9) is an enzyme that produces UDP-glucose, a key precursor for sucrose metabolism and cell wall biosynthesis. The objective of this work was to gain insights into the ScUGPase-1 expression pattern and regulatory mechanisms that control protein activity. ScUGPase-1 expression was negatively correlated with the sucrose content in the internodes during development, and only slight differences in the expression patterns were observed between two cultivars that differ in sucrose content. The intracellular localization of ScUGPase-1 indicated partial membrane association of this soluble protein in both the leaves and internodes. Using a phospho-specific antibody, we observed that ScUGPase-1 was phosphorylated in vivo at the Ser-419 site in the soluble and membrane fractions from the leaves but not from the internodes. The purified recombinant enzyme was kinetically characterized in the direction of UDP-glucose formation, and the enzyme activity was affected by redox modification. Preincubation with H2O2 strongly inhibited this activity, which could be reversed by DTT. Small angle x-ray scattering analysis indicated that the dimer interface is located at the C terminus and provided the first structural model of the dimer of sugarcane UGPase in solution.