951 resultados para Ultraviolet supercontinuum


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electronic properties of graphene have been studied more extensively than its photonic applications, in spite of its exciting optical properties. Recent results on solar cells, light emitting diodes and photodetectors show its true potential in photonics and optoelectronics. Here, we have explored the use of reduced graphene oxide as a candidate for solution processed ultraviolet photodetectors. UV detection is demonstrated by reduced graphene oxide in terms of time resolved photocurrent as well as photoresponse. The responsivity of the detectors is found to be 0.12 A/W with an external quantum efficiency of 40%. (C) 2011 American Institute of Physics. [doi:10.1063/1.3640222]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work explores the electrical transport and UV photoresponse properties of GaN nanodots (NDs) grown by molecular beam epitaxy (MBE). Single-crystalline wurtzite structure of GaN NDs is verified by X-ray diffraction and transmission electron microscopy (TEM). The interdigitated electrode pattern was created and current-voltage (I-V) characteristics of GaN NDs were studied in a metal-semiconductor-metal configuration. Dark I-V characteristics of lateral grown GaN NDs obeyed the Frenkel-Poole emission model, and the UV response of the device was stable and reproducible with on/off. The responsivity of the detectors is found to be 330 A/W with an external quantum efficiency of 1100%. (C) 2012 The Japan Society of Applied Physics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we report the ZnO/poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) based photodetectors that can response to ultraviolet as well as visible light. The temporal response of the heterostructures for various excitations in the ultraviolet (UV) and visible range are performed. The time constants are found to be excitation-dependent, the response to visible light is better as compared to UV. The reason behind the better response to UV light is the high level of defects present in ZnO as confirmed by the photoluminescence (PL) measurements. This is corroborated by the time resolved fluorescence (TRF) measurements which provides sufficient information behind the slow response time under the UV excitations. The possible explanation being the non-radiative recombinations occurring due to the traps or impurities present in the film which slows down the photoresponse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mn2+ doped (0-50.0 molar %) ZnS d-dots have been synthesized in water medium by using an environment friendly low cost chemical technique. Tunable dual emission in UV and yellow-orange regions is achieved by tailoring the Mn2+ doping concentration in the host ZnS nanocrystal. The optimum doping concentration for achieving efficient photoluminescence (PL) emission is determined to be similar to 1.10 (at. %) corresponding to 40.0 (molar %) of Mn2+ doping concentration used during synthesis. The mechanism of charge transfer from the host to the dopant leading to the intensity modulated tunable (594-610 nm) yellow-orange PL emission is straightforwardly understood as no capping agent is used. The temperature dependent PL emission measurements are carried out, viz., in 1.10 at. % Mn2+ doped sample and the experimental results are explained by using a theoretical PL emission model. It is found that the ratio of non-radiative to radiative recombination rates is temperature dependent and this phenomenon has not been reported, so far, in Mn2+ doped ZnS system. The colour tuning of the emitted light from the samples are evident from the calculated chromaticity coordinates. UV light irradiation for 150 min in 40.0 (molar %) Mn2+ doped sample shows an enhancement of 33% in PL emission intensity. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4795779]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report, strong ultraviolet (UV) emission from ZnO nanoparticle thin film obtained by a green synthesis, where the film is formed by the microwave irradiation of the alcohol solution of the precursor. The deposition is carried out in non-aqueous medium without the use of any surfactant, and the film formation is quick (5 min). The film is uniform comprising of mono-disperse nanoparticles having a narrow size distribution (15-22 nm), and that cover over an entire area (625 mm(2)) of the substrate. The growth rate is comparatively high (30-70 nm/min). It is possible to tune the morphology of the films and the UV emission by varying the process parameters. The growth mechanism is discussed precisely and schematic of the growth process is provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Letter, we present a non-contact method of controlling and monitoring photomechanical actuation in carbon nanotubes (CNT) by exposing it to ultra-violet radiation at different pulse rates (10 to 200 Hz). This is accomplished by imparting a reversible photo induced strain (5-330 mu epsilon) on CNT coated fibre Bragg gratings; CNT undergoes an internal reversible structural change due to cyclic photon absorption that leads to the development of mechanical strain, which in turn allows reversible switching of the Bragg wavelength. The results also reveal an interesting pulse rate dependent rise and fall times of photomechanical actuation in CNT. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we have reported the synthesis of dahlia flower-like ZnO nanostructures consisting of human finger-like nanorods by the hydrothermal method at 120 degrees C and without using any capping agent. Optical properties of the samples, including UV-vis absorption and photoluminescence (PL) emission characteristics are determined by dispersing the samples in water as well as in ethanol media. The quenching of PL emission intensity along-with the red shifting of the PL emission peak are observed when the samples are dispersed in water in comparison to those obtained after dispersing the samples in ethanol. It has been found that PL emission characteristic, particularly the spectral nature of PL emission, of the samples remains almost unaltered (except some improvement in UV PL emission) even after thermally annealing it for 2 h at the temperature of 300 degrees C. Also the synthesized powder samples, kept in a plastic container, showed a very stable PL emission even after 15 months of synthesis. Therefore, the synthesized samples might be useful for their applications in future optoelectronics devices. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth of highly dense ZnO nanowires (ZnO NWs) is demonstrated on three-dimensional graphene foam (GF) using resistive thermal evaporation technique. Photoresponse of the as-grown hybrid structure of ZnO NWs on GF (ZnO NWs/GF) is evaluated for ultraviolet (UV) detection. Excellent photoresponse with fast response and recovery times of 9.5 and 38 s with external quantum efficiency of 2490.8% is demonstrated at low illumination power density of 1.3 mW/cm(2). In addition, due to excellent charge carrier transport, mobility of graphene reduces the recombination rate of photogenerated charge carriers, hence the lifetime of photogenerated free charge carriers enhances in the photodetectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterostructures comprised of zinc oxide quantum dots (ZnO QDs) and graphene are presented for ultraviolet photodetectors (UV PD). Graphene-ZnO QDs-graphene (G-ZnO QDs-G) based PD demonstrated an excellent UV photoresponse with outstanding photoelastic characteristics when illuminated for several cycles with a periodicity 5 s. PD demonstrated faster detection ability with the response and recovery times of 0.29 s in response to much lower UV illumination. A direct variation in photoresponse is revealed with the bias voltage as well as UV illumination intensity. A drastic reduction in the dark current is noticed due to potential barrier formation between adjacent ZnO QDs and the recombination rate reduces by directly transferring photogenerated charge carriers from ZnO QDs to graphene for enhanced the charge mobility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A heterostructure of graphene and zinc oxide (ZnO) nanowires (NWs) is fabricated by sandwiching an array of ZnO NWs between two graphene layers for an ultraviolet (UV) photodetector. This unique structure allows NWs to be in direct contact with the graphene layers, minimizing the effect of the substrate or metal electrodes. In this device, graphene layers act as highly conducting electrodes with a high mobility of the generated charge carriers. An excellent sensitivity is demonstrated towards UV illumination, with a reversible photoresponse even for a short period of UV illumination. Response and recovery times of a few milliseconds demonstrated a much faster photoresponse than most of the conventional ZnO nanostructure-based photodetectors. It is shown that the generation of a built-in electric field between the interface of graphene and ZnO NWs effectively contributes to the separation of photogenerated electron-hole pairs for photocurrent generation without applying any external bias. Upon application of external bias voltage, the electric field further increases the drift velocity of photogenerated electrons by reducing the charge recombination rates, and results in an enhancement of the photocurrent. Therefore, the graphene-based heterostructure (G/ZnO NW/G) opens avenues to constructing a novel heterostructure with a combination of two functionally dissimilar materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A heterostructure of graphene and zinc oxide (ZnO) nanowires (NWs) is fabricated by sandwiching an array of ZnO NWs between two graphene layers for an ultraviolet (UV) photodetector. This unique structure allows NWs to be in direct contact with the graphene layers, minimizing the effect of the substrate or metal electrodes. In this device, graphene layers act as highly conducting electrodes with a high mobility of the generated charge carriers. An excellent sensitivity is demonstrated towards UV illumination, with a reversible photoresponse even for a short period of UV illumination. Response and recovery times of a few milliseconds demonstrated a much faster photoresponse than most of the conventional ZnO nanostructure-based photodetectors. It is shown that the generation of a built-in electric field between the interface of graphene and ZnO NWs effectively contributes to the separation of photogenerated electron-hole pairs for photocurrent generation without applying any external bias. Upon application of external bias voltage, the electric field further increases the drift velocity of photogenerated electrons by reducing the charge recombination rates, and results in an enhancement of the photocurrent. Therefore, the graphene-based heterostructure (G/ZnO NW/G) opens avenues to constructing a novel heterostructure with a combination of two functionally dissimilar materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(PDF has 12 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boron nitride is a promising material for nanotechnology applications due to its two-dimensional graphene-like, insulating, and highly-resistant structure. Recently it has received a lot of attention as a substrate to grow and isolate graphene as well as for its intrinsic UV lasing response. Similar to carbon, one-dimensional boron nitride nanotubes (BNNTs) have been theoretically predicted and later synthesised. Here we use first principles simulations to unambiguously demonstrate that i) BN nanotubes inherit the highly efficient UV luminescence of hexagonal BN; ii) the application of an external perpendicular field closes the electronic gap keeping the UV lasing with lower yield; iii) defects in BNNTS are responsible for tunable light emission from the UV to the visible controlled by a transverse electric field (TEF). Our present findings pave the road towards optoelectronic applications of BN-nanotube-based devices that are simple to implement because they do not require any special doping or complex growth

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attosecond-pulse extreme-ultraviolet (XUV) photoionization in a two-color laser field is investigated. Attosecond pulse trains with different numbers of pulses are examined, and their strong dependence on photoelectronic spectra is found. Single-color driving-laser-field-assisted attosecond XUV photoionization cannot determine the number of attosecond pulses from the photoelectronic energy spectrum that are detected orthogonally to the beam direction and the electric field vector of the linearly polarized laser field. A two-color-field-assisted XUV photoionization scheme is proposed for directly determining the number of attosecond pulses from a spectrum detected orthogonally. (C) 2005 Optical Society of America.