982 resultados para Ultrasound evaluation
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
OBJETIVO: Avaliar se fontes de luz aumentam a eficácia do peróxido de hidrogênio na técnica de clareamento profissional. METODOLOGIA: Foram empregados 60 dentes incisivos bovinos, com dimensões coronárias e radiculares padronizadas a partir do limite amelo-cementário, sendo descartada a porção lingual. Os corpos-de-prova (cp) foram limpos em ultra-som por 20 min e a dentina condicionada com H3PO4 a 38% por 15 s, sendo os (cp) imersos em solução de café solúvel a 25% por duas semanas. A dentina foi impermeabilizada com esmalte e os (cp) divididos em 5 grupos, sendo a cor inicial mensurada através do espectofotômetro-EasyShade (VITA). Todos os (cp) receberam três aplicações por 10 min do gel clareador Opalescence Xtra-Boost (Ultradent) conforme segue: Grupo 1 - controle, não recebeu fotoativação, Grupo 2 - ativado com luz halôgena, Grupo 3 - ativado com LED azul/LASER, Grupo 4 - ativado com LED verde/LASER e Grupo 5 - ativado com LED vermelho. Após o clareamento foi mensurada a variação de cor E, a*, b*e L* e as referentes à escala de cor Vita Clássico. Os dados foram submetidos à análise de variância, teste de Tukey e de Dunn (α=5%). RESULTADOS: A diferença geral da cor foi reduzida quando se empregou LED Azul e Luz Halógena, sendo que o desempenho do peróxido de hidrogênio a 38% foi intensificado dependendo da fonte de luz utilizada. A avaliação quantitativa de cor, obtida por espectrofotômetro e pela escala de cor Vita Clássico, foram coincidentes. CONCLUSÃO: O tipo de fonte de luz empregada interfere na eficácia do agente clareador.
Contribution of ocular B-mode and triplex Doppler in the evaluation of 10 Poodle dogs with cataracts
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The ultrasound stimulated and oxalic acid-catalyzed hydrolysis of tetramethoxysilane (TMOS) was studied by means of a heat flux calorimetric method as a function of the initial water/TMOS molar ratio (r) ranging from 2 to 10. The method is based on the time recording of the hydrolysis exothermic heat peak. which takes place in acidulated heterogeneous water-TMOS mixtures under ultrasonic stimulation, accounting for the instantaneous hydrolysis rate. The hydrolysis rate increases from zero up to a maximum value during the heterogeneous step of the process and then diminishes naturally according to the reactant consumption. The total hydrolyzed quantity was found to be slightly increasing with r. The immiscibility gap of the TMOS- water system in the presence of the hydrolysis products has been inferred from the evaluation of the reacted quantity during the heterogeneous step of the reaction and it has been represented in a ternary diagram in the studied r-range.
Resumo:
This work describes an efficient, fast, and reliable analytical methodology for mercury determination in urine samples using stripping chronopotentiometry at gold film electrodes. The samples were sonicated in the presence of concentrated HCl and H2O2 for 15 min in order to disrupt the organic ligands and release the mercury. Thirty samples can be treated over the optimized region of the ultrasonic bath. This sample preparation was enough to allow the accurate stripping chronopotentiometric determination of mercury in the treated samples. No background currents and no passivation of the gold film electrode due to the sample matrix were verified. The samples were also analyzed by cold vapour atomic absorption spectrometry (CV-AAS) and good agreement between the results was verified. The analysis of NIST SRM 2670 (Toxic Metals in Freeze-Dried Urine) also validated the proposed electroanalytical method. Finally, this method was applied for mercury evaluation in urine of workers exposed to hospital waste incinerators. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effects of low-intensity pulsed ultrasound on wound healing were evaluated at the graft-cornea transition in dogs following lamellar keratoplasty using tunica vaginalis preserved in 98% glycerin. Twenty-one dogs were subdivided into three groups of seven animals. The first group (W/US) received daily treatment of low-intensity pulsed ultrasound (20 mW/cm 2) for 15 min for the first 10 days post surgery. The second group (N/US) was submitted to the same procedure but with the ultrasound apparatus turned off. The third group, the control (CO), underwent the surgical procedure only. The animals were clinically evaluated during the initial (1-15 days), intermediate (16-30 days) and late (31-120 days) postoperative period. The corneas were evaluated by light microscopy at 1, 3, 7, 15, 30, 60 and 120 days after surgery. Clinically, there were no differences which would promote an advantage to any of the treatments. Light microscopy, however, revealed more extensive vascularization and more advanced wound healing in the W/US group, as well as a tendency towards early graft incorporation. Based on the present results, low-intensity pulsed ultrasound shows advantages, especially in situations where trophic support is a mandatory condition, facilitating better graft incorporation and rapid recovery of stromal organization.
Resumo:
The aim of this paper was to compare the dentin-pulp complex response to cavity preparation in human teeth using ultrasonic chemical vapor deposition (CVD) diamond tip and high-speed diamond bur. Class V buccal cavities were randomly prepared in 40 premolars from 14 patients aged 11 to 15 years. The cutting time was recorded and the cavities had the axial walls protected with gutta-percha and were filled with glass ionomer cement. The teeth were extracted at intervals of 0, 5, 10 and 20 days, and were decalcified, sectioned and stained by Hematoxylin & Eosin, Masson's Trichrome and Brown & Brenn techniques. The inflammatory response and cell disorganization were blindly evaluated by two examiners. The remaining dentin thickness (RDT) was measured by a linear scale using computer software. Statistical analysis by one-way ANOVA showed no statistically significant difference (P≤0.05) among the cavities prepared with either type of instrument, with mean RDT of 1132.50 mm. Cutting time and the pulp-dentin complex responses were analyzed statistically by Kruskal-Wallis and Dunn tests (P≤0.05). The ultrasonic CVD diamond tip took 5 times longer to prepare the cavities and there were no typical inflammatory pulp responses in cavities prepared with either type of cutting instrument, only mild to moderate cell disorganization was present. Even taking longer to cut the dental substrate, the ultrasonic CVD diamond tip produced similar pulp response compared to the conventional high-speed diamond bur.
Resumo:
Background: Doppler ultrasonography is a non-invasive real time pulse-wave technique recently used for the transrectal study of the reproductive system hemodynamics in large animals. This technic is based in the Doppler Effect Principle that proposes the change in frequency of a wave for an observer (red blood cells) moving relative to the source of the respective wave (ultrasonic transducer). This method had showed to be effective and useful for the evaluation of the in vivo equine reproductive tract increasing the diagnostic, monitoring, and predictive capabilities of theriogenology in mares. However, an accurate and truthful ultrasonic exam requires the previous knowledge of the Doppler ultrasonography principles. Review: In recent years, the capabilities of ultrasound flow imaging have increased enormously. The current Doppler ultrasound machines offer three methods of evaluation that may be used simultaneously (triplex mode). In B-mode ultrasound, a linear array of transducers simultaneously scans a plane through the tissue that can be viewed as a two-dimensional gray-scale image on screen. This mode is primarily used to identify anatomically a structure for its posterior evaluation using colored ultrasound modes (Color or Spectral modes). Colored ultrasound images of flow, whether Color or Spectral modes, are essentially obtained from measurements of moving red cells. In Color mode, velocity information is presented as a color coded overlay on top of a B-mode image, while Pulsed Wave Doppler provides a measure of the changing velocity throughout the cardiac cycle and the distribution of velocities in the sample volume represented by a spectral graphic. Color images conception varies according to the Doppler Frequency that is the difference between the frequency of received echoes by moving blood red cells and wave frequency transmitted by the transducer. To produce an adequate spectral graphic it is important determine the position and size of the simple gate. Furthermore, blood flow velocity measurement is influence by the intersection angle between ultrasonic pulses and the direction of moving blood-red cells (Doppler angle). Objectively colored ultrasound exam may be done on large arteries of the reproductive tract, as uterine and ovary arteries, or directly on the target tissue (follicle, for example). Mesovarium and mesometrium attachment arteries also can be used for spectral evaluation of the equine reproductive system. Subjectively analysis of the ovarian and uterine vascular perfusion must be done directly on the corpus luteum, follicular wall and uterus (endometrium and myometrium associated), respectively. Power-flow imaging has greater sensitivity to weak blood flow and independent of the Doppler angle, improving the evaluation of vessels with small diameters and slow blood flow. Conclusion: Doppler ultrasonography principles, methods of evaluation and reproductive system anatomy have been described. This knowledge is essential for the competent equipment acquisition and precise collection and analysis of colored ultrasound images. Otherwise, the reporting of inconsistent and not reproducible findings may result in the discredit of Doppler technology ahead of the scientific veterinary community.
Resumo:
Background: Studies with Doppler ultrassonography started at the end of the 90s for the determination of physiological and pathological alterations in the reproductive tract of the mare. Uterine alterations caused by inflammation, response from seminal plasma infusion, hormonal variations during estrous and diestrus, pregnancy and action of various vasoactive factors influence on the vascular perfusion detected by Doppler ultrasound. The development of efficient methods for uterine quality evaluation is of big importance for field equine reproduction veterinarians, once uterine environment is responsible for pregnancy maintenance. Review: Nowadays, the most used methods of uterine evaluation are the mode B ultrassonography, cytology, culture and biopsy. Hemodynamic evaluation of the uterus can be done by spectral data collected from large vessels, as A. uterine and its ramifications, or from subjective or objective evaluations from endometrium, miometrium and mesometrium attachment, which provide data referent to local and specific alterations of the evaluated area. Alterations in uterine vascular perfusion has been detected during estrous cycle, during pregnancy and in cases of infusion of inflammatory substances. These alterations happen because of vasoactive substances that act in the uterus during these events, however, most of these vasoactive substances are probably not even known. Also, important hemodynamic alterations in old mares, as an increase in vascular resistance, have been described. This increase might result from fibrosis of the uterus and in women it is considered to be a cause of infertility. In mares, periglandular fibrosis of the endometrium is considered to be the major diagnosable cause of embryonic and fetal loss in older mares. For the CL, ovarian artery of the mare supplies the ovary as well as the oviduct and therefore can be used for evaluation of these areas. The CL evaluation can also be done by the percentage of luteum area with colored signals as an indicator of the extent of blood flow. The percentage of the CL area with colored signals is determined subjectively by images observations in real time and/or by a freezing Power Doppler cross-section image with the maximum number of color pixels taped and the total number of color pixels is assessed by a computer analysis system. Therefore, a high correlation between plasmatic progesterone and CL vascularization also allows the CL evalution by this technique. In a first report, CL circulation reached its maximum on D5, the progesterone concentration in peripheral blood increased until D7 and in a posterior report, maximum perfusion was achieved two days after the maximum progesterone concentration (D8). Blood flow reduced between D10-D14 some days before the plasma progesterone decrease and, during the luteolytic period (D15-D17), the decline in CL blood-flow area was greater than blood flow decrease. Conclusion: Doppler ultrassonography add knowledge about uterine viability and CL functionality can be easily used by veterinarians in the field. It is a noninvasive method that provides real time results. However, because of the short time studies in this area have been done, many other answers still need to be found until normal and pathological patterns will be established.
Resumo:
Secondary phases such as Laves and carbides are formed during the final solidification stages of nickel based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ″ and δ phases. This work presents a new application and evaluation of artificial intelligent techniques to classify (the background echo and backscattered) ultrasound signals in order to characterize the microstructure of a Ni-based alloy thermally aged at 650 and 950 °C for 10, 100 and 200 h. The background echo and backscattered ultrasound signals were acquired using transducers with frequencies of 4 and 5 MHz. Thus with the use of features extraction techniques, i.e.; detrended fluctuation analysis and the Hurst method, the accuracy and speed in the classification of the secondary phases from ultrasound signals could be studied. The classifiers under study were the recent optimum-path forest (OPF) and the more traditional support vector machines and Bayesian. The experimental results revealed that the OPF classifier was the fastest and most reliable. In addition, the OPF classifier revealed to be a valid and adequate tool for microstructure characterization through ultrasound signals classification due to its speed, sensitivity, accuracy and reliability. © 2013 Elsevier B.V. All rights reserved.