991 resultados para Ultrasonic waves


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Piezoelectric array transducers applications are becoming usual in the ultrasonic non-destructive testing area. However, the number of elements can increase the system complexity, due to the necessity of multichannel circuitry and to the large amount of data to be processed. Synthetic aperture techniques, where one or few transmission and reception channels are necessary, and the data are post-processed, can be used to reduce the system complexity. Another possibility is to use sparse arrays instead of a full-populated array. In sparse arrays, there is a smaller number of elements and the interelement spacing is larger than half wavelength. In this work, results of ultrasonic inspection of an aluminum plate with artificial defects using guided acoustic waves and sparse arrays are presented. Synthetic aperture techniques are used to obtain a set of images that are then processed with an image compounding technique, which was previously evaluated only with full-populated arrays, in order to increase the resolution and contrast of the images. The results with sparse arrays are equivalent to the ones obtained with full-populated arrays in terms of resolution. Although there is an 8 dB contrast reduction when using sparse arrays, defect detection is preserved and there is the advantage of a reduction in the number of transducer elements and data volume. © 2013 Brazilian Society for Automatics - SBA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of ultrasound waves with a conventional dental ultrasonic scaler on glass ionomer cements surface accelerated initial setting reaction and improved the mechanical properties. Objective: This study evaluated the ultimate tensile strength of glass ionomer cements after ultrasonic excitation and different water storage times. Material and method: Twelve specimens of each material (Fuji IX GP, Ketac Molar Easymix and Vitremer) were prepared, and six of each received a 30-second ultrasound application during initial setting of the cements. After storage of the 24 hours or 30 days, the specimens were sectioned into stick to microtensile testing and the mean ultimate tensile strength values were submitted to Welch’s ANOVA and Tamhane’s test. Result: The results showed that the Vitremer presented the highest mean tensile strength. The chemically set Fuji IX GP presented significantly higher mean tensile strength after 30 days than after 24 hours of storage (p < 0.05). At 24 hours, the ultrasonically set Fuji IX GP presented significantly higher mean tensile strength than their counterparts set under standard conditions (p < 0.05). Conclusion: Treatment with ultrasound increased the tensile strength of Fuji IX GP in the early period of maturation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The determination of the complex reflection coefficient of ultrasonic shear-waves at the solid-liquid interface is a technique employed for the measurement of the viscoelastic properties of liquids. An interesting property of the measurement technique is the very small penetration depth of the shear-waves into the liquid sample, which permits measurements with liquid films of some micrometers thick. This property, along with the adhesion of oily substances to surfaces, can be used for the detection of oily contaminants in water. In this work, the employment of the ultrasonic shear-wave reflection technique to the detection of oily contaminants in water is proposed and the theoretical and experimental concepts involved are discussed. Preliminary experimental results show the measurement technique can detect SAE 40 automotive oil in water in volume proportions less than 0.5%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assessment of the integrity of structural components is of great importance for aerospace systems, land and marine transportation, civil infrastructures and other biological and mechanical applications. Guided waves (GWs) based inspections are an attractive mean for structural health monitoring. In this thesis, the study and development of techniques for GW ultrasound signal analysis and compression in the context of non-destructive testing of structures will be presented. In guided wave inspections, it is necessary to address the problem of the dispersion compensation. A signal processing approach based on frequency warping was adopted. Such operator maps the frequencies axis through a function derived by the group velocity of the test material and it is used to remove the dependence on the travelled distance from the acquired signals. Such processing strategy was fruitfully applied for impact location and damage localization tasks in composite and aluminum panels. It has been shown that, basing on this processing tool, low power embedded system for GW structural monitoring can be implemented. Finally, a new procedure based on Compressive Sensing has been developed and applied for data reduction. Such procedure has also a beneficial effect in enhancing the accuracy of structural defects localization. This algorithm uses the convolutive model of the propagation of ultrasonic guided waves which takes advantage of a sparse signal representation in the warped frequency domain. The recovery from the compressed samples is based on an alternating minimization procedure which achieves both an accurate reconstruction of the ultrasonic signal and a precise estimation of waves time of flight. Such information is used to feed hyperbolic or elliptic localization procedures, for accurate impact or damage localization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present thesis focuses on elastic waves behaviour in ordinary structures as well as in acousto-elastic metamaterials via numerical and experimental applications. After a brief introduction on the behaviour of elastic guided waves in the framework of non-destructive evaluation (NDE) and structural health monitoring (SHM) and on the study of elastic waves propagation in acousto-elastic metamaterials, dispersion curves for thin-walled beams and arbitrary cross-section waveguides are extracted via Semi-Analytical Finite Element (SAFE) methods. Thus, a novel strategy tackling signal dispersion to locate defects in irregular waveguides is proposed and numerically validated. Finally, a time-reversal and laser-vibrometry based procedure for impact location is numerically and experimentally tested. In the second part, an introduction and a brief review of the basic definitions necessary to describe acousto-elastic metamaterials is provided. A numerical approach to extract dispersion properties in such structures is highlighted. Afterwards, solid-solid and solid-fluid phononic systems are discussed via numerical applications. In particular, band structures and transmission power spectra are predicted for 1P-2D, 2P-2D and 2P-3D phononic systems. In addition, attenuation bands in the ultrasonic as well as in the sonic frequency regimes are experimentally investigated. In the experimental validation, PZTs in a pitch-catch configuration and laser vibrometric measurements are performed on a PVC phononic plate in the ultrasonic frequency range and sound insulation index is computed for a 2P-3D phononic barrier in the sonic frequency range. In both cases the numerical-experimental results comparison confirms the existence of the numerical predicted band-gaps. Finally, the feasibility of an innovative passive isolation strategy based on giant elastic metamaterials is numerically proved to be practical for civil structures. In particular, attenuation of seismic waves is demonstrated via finite elements analyses. Further, a parametric study shows that depending on the soil properties, such an earthquake-proof barrier could lead to significant reduction of the superstructure displacement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fully integrated on-board electronic system that can perform in-situ structural health monitoring (SHM) of aircraft?s structures using specifically designed equipment for SHM based on guided wave ultrasonic method or Lamb waves? method is introduced. This equipment is called Phased Array Monitoring for Enhanced Life Assessment (PAMELA III) and is an essential part of overall PAMELA SHM? system. PAMELA III can generate any kind of excitation signals, acquire the response signals that propagate throughout the structure being tested, and perform the signal processing for damage detection directly on the structure without need to send the huge amount of raw signals but only the final SHM maps. It monitors the structure by means of an array of integrated Phased Array (PhA) transducers preferably bonded onto the host structure. The PAMELA III hardware for SHM mapping has been designed, built and subjected to laboratory tests, using aluminum and CFRP structures. The 12 channel system has been designed to be low weight (265 grams only), to have a small form factor, to be directly mounted above the integrated PhA transducers without need for cables and to be EMI protected so that the equipment can be taken on board an aircraft to perform required SHM analyses by use of embedded SHM algorithms. Moreover, the autonomous, automatic and on real-time working procedure makes it suitable for the avionic field, sending the corresponding alerts, maps and reports to external equipment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the reflection characteristics of structural or guided waves in rods at a solid/liquid interface. Structural waves, whose wavelengths are much larger than the diameter of the rod, are described in a first approximation by classical one-dimensional wave theory. The reflection characteristics of such waves at a solid/liquid (melting) interface has been reported by two different ultrasonic measurement techniques: first, measuring the fast regression rate of a melting interface during the burning of metal rod samples in an oxygen-enriched environment, and second, monitoring the propagation of the solid/liquid interface during the slow melting and solidification of a rod sample in a furnace. The second work clearly shows that the major reflection occurs from the solid/liquid interface and not the liquid/gas interface as predicted by plane longitudinal wave reflectivity theory. The present work confirms this observation by reporting on the results of some specially designed experiments to identify the main interface of reflection for structural waves in rods. Hence, it helps in explaining the fundamental discrepancy between the reflection characteristics at a solid/liquid interface between low frequency structural waves and high frequency bulk waves, and confirms that the detected echo within a burning metallic rod clearly represents a reflection from the solid/liquid interface. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the feasibility of using in-fiber Bragg gratings for measuring acoustic fields in the megahertz range. We found that the acoustic coupling from the ultrasonic field to the grating leads to the formation of standing waves in the fiber. Because of these standing waves, the system response is complex and, as we show, the grating does not act as an effective probe. However, significant improvement in its performance can be gained by use of short gratings coupled with an appropriate desensitization of the fiber. A noise-limited pressure resolution of ˜4.5 × 10-3 atm/vHz was found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We are currently witnessing an era where interaction with computers is no longer limited to conventional methods (i.e. keyboard and mouse). Human Computer Interaction (HCI) as a progressive field of research, has opened up alternatives to the traditional interaction techniques. Embedded Infrared (IR) sensors, Accelerometers and RGBD cameras have become common inputs for devices to recognize gestures and body movements. These sensors are vision based and as a result the devices that incorporate them will be reliant on presence of light. Ultrasonic sensors on the other hand do not suffer this limitation as they utilize properties of sound waves. These sensors however, have been mainly used for distance detection and not with HCI devices. This paper presents our approach in developing a multi-dimensional interaction input method and tool Ultrasonic Gesture-based Interaction (UGI) that utilizes ultrasonic sensors. We demonstrate how these sensors can detect object movements and recognize gestures. We present our approach in building the device and demonstrate sample interactions with it. We have also conducted a user study to evaluate our tool and its distance and micro gesture detection accuracy. This paper reports these results and outlines our future work in the area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The one-dimensional propagation of a combustion wave through a premixed solid fuel for two-stage kinetics is studied. We re-examine the analysis of a single reaction travelling-wave and extend it to the case of two-stage reactions. We derive an expression for the travelling wave speed in the limit of large activation energy for both reactions. The analysis shows that when both reactions are exothermic, the wave structure is similar to the single reaction case. However, when the second reaction is endothermic, the wave structure can be significantly different from single reaction case. In particular, as might be expected, a travelling wave does not necessarily exist in this case. We establish conditions in the limiting large activation energy limit for the non-existence, and for monotonicity of the temperature profile in the travelling wave.