895 resultados para Ultra-endurance exercise
Resumo:
Heat stroke is a life-threatening condition that can be fatal if not appropriately managed. Although heat stroke has been recognised as a medical condition for centuries, a universally accepted definition of heat stroke is lacking and the pathology of heat stroke is not fully understood. Information derived from autopsy reports and the clinical presentation of patients with heat stroke indicates that hyperthermia, septicaemia, central nervous system impairment and cardiovascular failure play important roles in the pathology of heat stroke. The current models of heat stroke advocate that heat stroke is triggered by hyperthermia but is driven by endotoxaemia. Endotoxaemia triggers the systemic inflammatory response, which can lead to systemic coagulation and haemorrhage, necrosis, cell death and multi-organ failure. However, the current heat stroke models cannot fully explain the discrepancies in high core temperature (Tc) as a trigger of heat stroke within and between individuals. Research on the concept of critical Tc: as a limitation to endurance exercise implies that a high Tc may function as a signal to trigger the protective mechanisms against heat stroke. Athletes undergoing a period of intense training are subjected to a variety of immune and gastrointestinal (GI) disturbances. The immune disturbances include the suppression of immune cells and their functions, suppression of cell-mediated immunity, translocation of lipopolysaccharide (LPS), suppression of anti-LPS antibodies, increased macrophage activity due to muscle tissue damage, and increased concentration of circulating inflammatory and pyrogenic cytokines. Common symptoms of exercise-induced GI disturbances include diarrhoea, vomiting, gastrointestinal bleeding, and cramps, which may increase gut-related LPS translocation. This article discusses the current evidence that supports the argument that these exercise-induced immune and GI disturbances may contribute to the development of endotoxaemia and heat stroke. When endotoxaemia can be tolerated or prevented, continuing exercise and heat exposure will elevate Tc to a higher level (> 42 degrees C), where heat stroke may occur through the direct thermal effects of heat on organ tissues and cells. We also discuss the evidence suggesting that heat stroke may occur through endotoxaemia (heat sepsis), the primary pathway of heat stroke, or hyperthermia, the secondary pathway of heat stroke. The existence of these two pathways of heat stroke and the contribution of exercise-induced immune and GI disturbances in the primary pathway of heat stroke are illustrated in the dual pathway model of heat stroke. This model of heat stroke suggests that prolonged intense exercise suppresses anti-LPS mechanisms, and promotes inflammatory and pyrogenic activities in the pathway of heat stroke.
Resumo:
In an attempt to improve the current understanding of the adaptive response to exercise in humans, this dissertation performed a series of studies designed to examine the impact of training intensity and mode on aerobic capacity and performance, fibre-type specific adaptations to training, and individual patterns of response across molecular, morphological and genetic factors. Project #1 determined that training intensity, session dose, baseline VO2max and total training volume do not influence the magnitude of change in VO2max by performing a meta-regression, and meta-analysis of 28 different studies. The intensity of training had no effect on the magnitude of increase in maximal oxygen uptake in young healthy participants, but similar adaptations were achieved with lower training doses following high intensity training. Project # 2 determined the acute molecular response, and training-induced adaptations in aerobic performance, aerobic capacity and muscle phenotype following high-intensity interval training (HIT) or endurance exercise (END). The acute molecular response (fibre recruitment and signal activation) and training-induced adaptations in aerobic capacity, aerobic performance, and muscle phenotype were similar following HIT and END. Project # 3 examined the impact of baseline muscle morphology and molecular characteristics on the training response, and if muscle adaptations are coordinated. The muscle phenotype of individuals who experience the largest improvements (high responders) were lower before training for some muscle characteristics and molecular adaptations were coordinated within individual participants. Project # 4 examined the impact of 2 different intensities of HIT on the expression of nuclear and mitochondrial encoded genes targeted by PGC-1α. A systematic upregulation of nuclear and mitochondrial encoded genes was not present in the early recovery period following acute HIT, but the expression of mitochondrial genes were coordinated at an individual level. Collectively, results from the current dissertation contribute to our understanding of the molecular mechanisms influencing skeletal muscle and whole-body adaptive responses to acute exercise and training in humans.
Resumo:
Skeletal muscle displays enormous plasticity to respond to contractile activity with muscle from strength- (ST) and endurance-trained (ET) athletes representing diverse states of the adaptation continuum. Training adaptation can be viewed as the accumulation of specific proteins. Hence, the altered gene expression that allows for changes in protein concentration is of major importance for any training adaptation. Accordingly, the aim of the present study was to quantify acute subcellular responses in muscle to habitual and unfamiliar exercise. After 24-h diet/exercise control, 13 male subjects (7 ST and 6 ET) performed a random order of either resistance (8 × 5 maximal leg extensions) or endurance exercise (1 h of cycling at 70% peak O2 uptake). Muscle biopsies were taken from vastus lateralis at rest and 3 h after exercise. Gene expression was analyzed using real-time PCR with changes normalized relative to preexercise values. After cycling exercise, peroxisome proliferator-activated receptor-γ coactivator-1α (ET ∼8.5-fold, ST ∼10-fold, P < 0.001), pyruvate dehydrogenase kinase-4 (PDK-4; ET ∼26-fold, ST ∼39-fold), vascular endothelial growth factor (VEGF; ET ∼4.5-fold, ST ∼4-fold), and muscle atrophy F-box protein (MAFbx) (ET ∼2-fold, ST ∼0.4-fold) mRNA increased in both groups, whereas MyoD (∼3-fold), myogenin (∼0.9-fold), and myostatin (∼2-fold) mRNA increased in ET but not in ST (P < 0.05). After resistance exercise PDK-4 (∼7-fold, P < 0.01) and MyoD (∼0.7-fold) increased, whereas MAFbx (∼0.7-fold) and myostatin (∼0.6-fold) decreased in ET but not in ST. We conclude that prior training history can modify the acute gene responses in skeletal muscle to subsequent exercise.
Resumo:
Purpose Commencing selected workouts with low muscle glycogen availability augments several markers of training adaptation compared with undertaking the same sessions with normal glycogen content. However, low glycogen availability reduces the capacity to perform high-intensity (>85% of peak aerobic power (V·O2peak)) endurance exercise. We determined whether a low dose of caffeine could partially rescue the reduction in maximal self-selected power output observed when individuals commenced high-intensity interval training with low (LOW) compared with normal (NORM) glycogen availability. Methods Twelve endurance-trained cyclists/triathletes performed four experimental trials using a double-blind Latin square design. Muscle glycogen content was manipulated via exercise–diet interventions so that two experimental trials were commenced with LOW and two with NORM muscle glycogen availability. Sixty minutes before an experimental trial, subjects ingested a capsule containing anhydrous caffeine (CAFF, 3 mg-1·kg-1 body mass) or placebo (PLBO). Instantaneous power output was measured throughout high-intensity interval training (8 × 5-min bouts at maximum self-selected intensity with 1-min recovery). Results There were significant main effects for both preexercise glycogen content and caffeine ingestion on power output. LOW reduced power output by approximately 8% compared with NORM (P < 0.01), whereas caffeine increased power output by 2.8% and 3.5% for NORM and LOW, respectively, (P < 0.01). Conclusion We conclude that caffeine enhanced power output independently of muscle glycogen concentration but could not fully restore power output to levels commensurate with that when subjects commenced exercise with normal glycogen availability. However, the reported increase in power output does provide a likely performance benefit and may provide a means to further enhance the already augmented training response observed when selected sessions are commenced with reduced muscle glycogen availability. It has long been known that endurance training induces a multitude of metabolic and morphological adaptations that improve the resistance of the trained musculature to fatigue and enhance endurance capacity and/or exercise performance (13). Accumulating evidence now suggests that many of these adaptations can be modified by nutrient availability (9–11,21). Growing evidence suggests that training with reduced muscle glycogen using a “train twice every second day” compared with a more traditional “train once daily” approach can enhance the acute training response (29) and markers representative of endurance training adaptation after short-term (3–10 wk) training interventions (8,16,30). Of note is that the superior training adaptation in these previous studies was attained despite a reduction in maximal self-selected power output (16,30). The most obvious factor underlying the reduced intensity during a second training bout is the reduction in muscle glycogen availability. However, there is also the possibility that other metabolic and/or neural factors may be responsible for the power drop-off observed when two exercise bouts are performed in close proximity. Regardless of the precise mechanism(s), there remains the intriguing possibility that the magnitude of training adaptation previously reported in the face of a reduced training intensity (Hulston et al. (16) and Yeo et al.) might be further augmented, and/or other aspects of the training stimulus better preserved, if power output was not compromised. Caffeine ingestion is a possible strategy that might “rescue” the aforementioned reduction in power output that occurs when individuals commence high-intensity interval training (HIT) with low compared with normal glycogen availability. Recent evidence suggests that, at least in endurance-based events, the maximal benefits of caffeine are seen at small to moderate (2–3 mg·kg-1 body mass (BM)) doses (for reviews, see Refs. (3,24)). Accordingly, in this study, we aimed to determine the effect of a low dose of caffeine (3 mg·kg-1 BM) on maximal self-selected power output during HIT commenced with either normal (NORM) or low (LOW) muscle glycogen availability. We hypothesized that even under conditions of low glycogen availability, caffeine would increase maximal self-selected power output and thereby partially rescue the reduction in training intensity observed when individuals commence HIT with low glycogen availability.
Resumo:
We examined acute molecular responses in skeletal muscle to divergent exercise stimuli by combining consecutive bouts of resistance and endurance exercise. Eight men [22.9 ± 6.3 yr, body mass of 73.2 ± 4.5 kg, peak O2 uptake (V?O2peak) of 54.0 ± 5.7 ml·kg-1·min-1] were randomly assigned to complete trials consisting of either resistance exercise (8 x 5 leg extension, 80% 1 repetition maximum) followed by a bout of endurance exercise (30 min cycling, 70% V?O2peak) or vice versa. Muscle biopsies were obtained from the vastus lateralis at rest, 15 min after each exercise bout, and after 3 h of passive recovery to determine early signaling and mRNA responses. Phosphorylation of Akt and Akt1Ser473 were elevated 15 min after resistance exercise compared with cycling, with the greatest increase observed when resistance exercise followed cycling (?55%; P < 0.01). TSC2-mTOR-S6 kinase phosphorylation 15 min after each bout of exercise was similar regardless of the exercise mode. The cumulative effect of combined exercise resulted in disparate mRNA responses. IGF-I mRNA content was reduced when cycling preceded resistance exercise (-42%), whereas muscle ring finger mRNA was elevated when cycling was undertaken after resistance exercise (?52%; P < 0.05). The hexokinase II mRNA level was higher after resistance cycling (?45%; P < 0.05) than after cycling-resistance exercise, whereas modest increases in peroxisome proliferator-activated receptor gamma coactivator-1? mRNA did not reveal an order effect. We conclude that acute responses to diverse bouts of contractile activity are modified by the exercise order. Moreover, undertaking divergent exercise in close proximity influences the acute molecular profile and likely exacerbates acute "interference".
Resumo:
McArdle disease, caused by inherited deficiency of the enzyme muscle glycogen phosphorylase (GP-MM), is arguably the paradigm of exercise intolerance. The recent knock-in (p.R50X/p.R50X) mouse disease model allows an investigation of the phenotypic consequences of muscle glycogen unavailability and the physiopathology of exercise intolerance. We analysed, in 2-month-old mice [wild-type (wt/wt), heterozygous (p.R50X/wt) and p.R50X/p.R50X)], maximal endurance exercise capacity and the molecular consequences of an absence of GP-MM in the main glycogen metabolism regulatory enzymes: glycogen synthase, glycogen branching enzyme and glycogen debranching enzyme, as well as glycogen content in slow-twitch (soleus), intermediate (gastrocnemius) and glycolytic/fast-twitch (extensor digitorum longus; EDL) muscles.
Resumo:
A recent meta-analysis by Iskandar et al. (1) nicely showed that endurance athletes have larger left atrial (LA) diameters compared with control subjects. Yet only 9 of 54 studies included in their analysis reported LA volume values corrected for body surface area (BSA). In fact, few studies have determined LA volume in young athletes, and, to the best of our knowledge, no study has reported this variable in older athletes. This is an important question given the growing debate about the potential deleterious effects of long-term strenuous endurance exercise on the human heart, notably the higher risk of atrial fibrillation (AF), a condition for which both atrial dilation and the normal aging process are thought to be potential causative mechanisms (2). Thus, we aimed to assess the long-term consequences of endurance exercise on LA volume in athletes who were highly competitive at younger ages and are still active. To this end, we compared BSA-corrected LA volumes determined with late gadolinium enhancement magnetic resonance imaging (LGE-MRI) in former elite endurance athletes and sedentary control subjects.
Resumo:
RESUMO: A reabilitação respiratória (RR) é uma intervenção abrangente e interdisciplinar dirigida aos doentes respiratórios crónicos e inclui o treino de exercício, programas de educação e de modificação comportamental, entre outros, desenhados individualmente para melhorar o desempenho físico e psicossocial e promover a adesão a longo prazo a comportamentos promotores de saúde. A doença pulmonar obstrutiva crónica (DPOC) é uma doença comum, afetando cerca de 210 milhões de pessoas em todo o mundo, com elevada mortalidade e com custos económicos significativos decorrentes do agravamento progressivo da doença, das hospitalizações e de reinternamentos frequentes. Apesar do crescente conhecimento da DPOC e do papel da RR nos benefícios para a saúde, existem aspetos ainda não esclarecidos que têm impacto na prática clínica e de investigação e nas decisões das autoridades de saúde. A primeira parte desta tese focou a DPOC e o seu impacto negativo e incluiu: o estudo da prevalência da DPOC em Portugal; os fatores clínicos e funcionais que se associam à mortalidade em doentes com DPOC avançada; a morbilidade, impacto funcional e risco dos doentes se tornarem dependentes para as atividades diárias e a influência da inflamação sistémica. A prevalência estimada da DPOC de 14,2% indica que esta é uma doença comum em Portugal e alerta para a necessidade de uma maior sensibilização da população, dos profissionais de saúde e autoridades de saúde com vista a um diagnóstico precoce e à alocação dos recursos terapêuticos adequados. A elevada taxa de mortalidade em doentes com DPOC avançada - 36,6% em 3 anos - associou-se a insuficiência respiratória, a elevado número de exacerbações, ao cancro do pulmão e a reduzida capacidade funcional para a marcha, salientando a importância da referenciação precoce para RR, a identificação e o tratamento das comorbilidades e a prevenção das exacerbações. A aplicação de um questionário que avaliou as atividades da vida diária básicas e instrumentais, permitiu identificar um marcador clínico do risco de dependência, complementando as avaliações funcionais e associando-se a outros marcadores de mau prognóstico, como as exacerbações. Em doentes com DPOC, com FEV1 médio de 46,76% (desvio padrão: 20,90%), 67% da categoria D do GOLD, verificou-se uma associação positiva entre a expressão de genes inflamatórios avaliada pela reação em cadeia da polimerase (ARN mensageiro de IFNg, IL1b, IL6, IL8, TNFa, TGFb1, iNOS) e o índice de massa corporal em repouso, acentuando-se após o exercício. Este estudo aponta a inflamação como o potencial elo de ligação entre a obesidade e a inflamação sistémica em doentes com DPOC. A segunda parte da tese focou a RR, nomeadamente os seus efeitos em doentes das categorias GOLD A, B, C e D; o impacto das comorbilidades nos resultados da RR e os resultados de diferentes intensidades de treino aeróbio. Após o programa de RR, verificaram-se melhorias significativas na capacidade de exercício funcional e de endurance e no estado geral de saúde dos doentes de todas as categorias GOLD. Esta classificação não distingue os doentes que melhor poderão beneficiar desta intervenção, indicando que devem ser referenciados para RR, os doentes sintomáticos ou com repercussão na qualidade de vida, independentemente da categoria da DPOC a que pertençam. A prevalência das comorbilidades no grupo de doentes com DPOC que é referenciado para RR, é elevada, sendo as mais frequentes, as cardiovasculares, as respiratórias e as psicológicas. Apesar de poderem diminuir o impacto da RR, os resultados desta foram semelhantes independentemente do número de comorbilidades. A identificação e o tratamento sistemáticos das comorbilidades conferem maior segurança clínica a esta intervenção terapêutica a qual, por apresentar bons resultados, não deve limitar a referenciação dos doentes. Com o programa de RR, verificou-se melhoria significativa em todos os resultados centrados no doente para ambas as intensidades de treino aeróbio, a 60% e a 80% da potência aeróbica máxima (Wmax), com melhoria do estado geral de saúde, nos sintomas e na capacidade para o exercício, o que questiona a indicação sistemática de elevadas intensidades de treino em doentes com DPOC para a obtenção de benefícios a curto prazo. Na terceira e última parte da tese foi estudado o papel da atividade física na DPOC, focando os fatores que influenciam a atividade física diária; a evolução da capacidade funcional e o estado de saúde 2 anos após um programa de RR e o papel da telemonitorização na quantificação e monitorização da atividade física. Confirmámos que os doentes com DPOC são marcadamente sedentários e os fatores que se associaram ao sedentarismo nestes doentes foram a dispneia e a distância percorrida na prova de marcha de seis minutos. Este estudo sublinha a importância do controlo sintomático, nomeadamente da dispneia, bem como, mais uma vez, o potencial papel da reabilitação respiratória no aumento da capacidade funcional para o exercício e na aquisição de hábitos de vida fisicamente ativa. Verificámos que, apesar de os doentes com DPOC apresentarem benefícios clinicamente significativos na capacidade funcional para o exercício e no estado geral de saúde com o programa de RR, apenas os que se mantêm ativos, podem, no final dos dois anos de seguimento, manter os efeitos benéficos desse programa. O sistema de telemonitorização que combina a oximetria e a quantificação da atividade física provou ser clinicamente útil na avaliação da necessidade de oxigenoterapia de longa duração (OLD) e na aferição do débito de oxigénio em repouso, no esforço e no sono, podendo contribuir para uma melhor adequação da prescrição da OLD. A monitorização dos níveis de atividade física regular é um importante instrumento de avaliação dos programas de RR e o seu uso potencial na telereabilitação permitirá prolongar a eficácia dos programas e reduzir os custos associados aos cuidados de saúde.---------------------------------------------------------------------------------------------------ABSTRACT: Pulmonary rehabilitation (PR) is a comprehensive interdisciplinary intervention that includes, but is not limited to, exercise training, education, and behavior change, individually designed to improve physical and psychological conditions of people with chronic respiratory disease and to promote long-term adherence to health-enhancing behaviors. Chronic obstructive pulmonary disease (COPD) is a common disease, affecting about 210 million people worldwide, with high mortality and significant health-related costs due to disease progression, hospitalizations and frequent hospital readmissions. Although the increasing knowledge about COPD and benefitial outcomes of PR, some aspects with impact in clinical practice, research and health authorities’ decisions, remain to be clarified. The first part of this thesis focused on COPD and its negative impact, including the study of COPD prevalence in Portugal; clinical and functional factors associated with mortality in advanced COPD patients; morbidity, functional impact and risk of others’ dependance to perform activities of daily living; and the role of systemic inflammation. The evidence of 14.2% estimated COPD prevalence as a common disease in Portugal raises the need of an increasing awareness of population, health care professionals and health authorities towards an earlier diagnosis and apropriate treatment resources allocation. High mortality in patients with advanced COPD – 36.6% in 3 years - was associated with respiratory failure, high frequency of exacerbations, lung cancer and a low functional capacity in walking. This highlightens the importance of an earlier referral to PR, comorbidity identification and treatment, and prevention of exacerbations. A questionnaire evaluated basic and instrumental activities of daily living, and identified a clinical marker of the risk of becoming dependent. This clinical marker complemented other functional evaluations and was associated with prognosis markers such as the number of exacerbations. In COPD patients with a mean FEV1 46.76% (SD 20.90%), 67% belonging to GOLD grade D, we found a positive association between inflammatory gene expression evaluated by polymerase chain reaction (IFNg, IL1b, IL6, IL8, TNFa, TGFb1, iNOS RNA messenger) and body mass index at rest, and a further increase with exercise. This study evidenced obesity as one potential link between COPD and systemic inflammation. The second part of this thesis focused PR, namely its outcomes in patients of GOLD categories A, B, C and D; comorbidities impact in PR outcomes, and the impact of different exercise training intensities in patient related outcomes. xviii With PR intervention, we found significant improvement in functional exercise capacity, endurance exercise capacity and health status in patients of all GOLD categories. This classification did not differentiate which patients would benefit more from PR, hence all symptomatic patients with a negative impact in health status should be referred to PR, regardless of the GOLD category they belong to. There is a high prevalence of comorbidities in COPD patients referred to PR, being cardiovascular, respiratory and psychological, the most prevalent. Although some comorbidities might reduce PR impact, the results were similar regardless of the number of comorbidities. Systematic comorbidities identification and treatment provides safety to PR intervention, and its good results should not preclude patients referral. With PR intervention we found a significant improvement in all patient reported outcomes for exercise training intensities at 60% and 80% maximum work rate (Wmax), namely in health status, symptoms and exercise capacity. These findings challenge the current systematic indication of high exercise training intensities to achieve PR short-term benefits. In the third and last part of the thesis, the role of physical activity in COPD was studied, focusing factors that may influence daily physical activity; the evolution of functional capacity and health status two years after a PR program, and the role of a telemonitoring system in physical activity quantification and monitoring. We confirmed that COPD patients are markedly inactive and factors associated with a sedentary lifestyle are dyspnea and 6 minute walking distance. This study emphasized the importance of symptom control, namely of dyspnea, as well as, once again, the potential role of PR in functional exercise improvement and in integrating physically active habits in daily life. We verified that, although COPD patients improve functional exercise capacity and health status after a PR program, only those who kept physical activity habits were able to maintain those effects after 2 years of follow-up. A telemonitoring system that combines oximetry and physical activity quantification proved to be clinically useful in the evaluation of long-term oxygen therapy (LTOT) indication, as well as in the titration of oxygen levels at rest, exertion, and sleeping, which might contribute to a more adequate LTOT prescription. Monitoring of daily physical activity levels is an important PR evaluation instrument and its potential use in telerehabilitation might allow lengthening programs efficacy, while reducing health-care costs.
Resumo:
L’insuffisance cardiaque est une pathologie provoquant une diminution importante des capacités fonctionnelles des patients ainsi qu’une diminution drastique de la qualité de vie. L’évaluation des capacités fonctionnelles est généralement effectuée par une épreuve d’effort maximal. Cependant pour plusieurs patients, cet effort est difficile à compléter. Les objectifs de l’étude présentée dans ce mémoire sont : (1) valider trois méthodes d’évaluation de la capacité fonctionnelle et aérobie des sujets souffrant d’insuffisance cardiaque avec un complexe QRS élargi; (2) chercher à établir le profil des patients démontrant une meilleure tolérance à l’exercice malgré une consommation maximale d’oxygène identique; et (3) démontrer les conséquences de la présence et de la magnitude de l’asynchronisme cardiaque dans la capacité fonctionnelle et la tolérance à l’exercice. Tous les sujets ont été soumis à un test de marche de six minutes, un test d’endurance à charge constante sur tapis roulant et à une épreuve d’effort maximal avec mesure d’échanges gazeux à la bouche. Les résultats ont montré une association significative entre les épreuves maximale et plus spécifiquement sous-maximale. De plus, une meilleure tolérance à l’exercice serait associée significativement à une plus grande masse du ventricule gauche. Finalement, les résultats de notre étude n’ont pas montré d’effet d’un asynchronisme cardiaque sur la performance à l’effort tel qu’évalué par nos protocoles.
Resumo:
ANTECEDENTES: En Colombia, reportes del año 2010 de la Encuesta Nacional de la Situación en Nutrición ENSIN 2010(2), muestran uno de cada dos colombianos, presentan un índice de masa corporal mayor al esperado (3) METODO: El presente estudio de corte transversal, determino la prevalencia de obesidad y otros factores de riesgo cardiovascular en una población de estudiantes de Ciencias de la Salud de una Universidad regional en el primer periodo académico del año 2013. El tamaño de muestra fue n=113 sujetos que corresponden 60,5% a la carrera de medicina y 39,95% a enfermería. Con el fin de conocer su comportamiento con respecto a hábitos y estilos de vida específicos como el consumo de alcohol, el consumo de tabaco y el sedentarismo, así como su asociación a eventos inflamatorios relacionados con la fisiopatología de los procesos de salud asociados al peso, por medio de instrumentos de medición clínica, antropométrica y sérica, determino un modelo estadístico propicio para entender el comportamiento de la obesidad y la enfermedad Cardiovascular RESULTADOS: La prevalencia estimada de sobrepeso y obesidad por Índice de Masa Corporal (IMC), fue del 27,7% (IC 95%: 19.9%,37.2%); por el perímetro abdominal (OBPABD) se encontró una prevalencia estimada del 27,4% (IC 95%: 19,9% – 36,4%), y la prevalencia con el Índice Cintura Cadera (OBICC) fue de 3,5% (IC 95%:1,3% – 9,3%). CONCLUSIONES: La presencia de hábitos no saludables y la presencia de sobrepeso y obesidad se considera que es necesario en primera instancia una valoración general de estado nutricional de los universitarios de las diferentes facultados y plantear estrategias preventivas ya que la literatura documenta los efectos de los hábitos no saludables sino además documenta los efectos de la prevención de la misma ya que en si se ha encontrado asociación para enfermedades cardiovasculares. Se propone que para obtener mayor información del comportamiento de los factores de riesgo cardiovasculares se deberían realizar estudios retrospectivos en el que intervengan las demás carreras de la universidad y poder evaluar la totalidad de población universitaria
Resumo:
The break point of the curve of blood lactate vs exercise load has been called anaerobic threshold (AT) and is considered to be an important indicator of endurance exercise capacity in human subjects. There are few studies of AT determination in animals. We describe a protocol for AT determination by the lactate minimum test in rats during swimming exercise. The test is based on the premise that during an incremental exercise test, and after a bout of maximal exercise, blood lactate decreases to a minimum and then increases again. This minimum value indicates the intensity of the AT. Adult male (90 days) Wistar rats adapted to swimming for 2 weeks were used. The initial state of lactic acidosis was obtained by making the animals jump into the water and swim while carrying a load equivalent to 50% of body weight for 6 min (30-s exercise interrupted by a 30-s rest). After a 9-min rest, blood was collected and the incremental swimming test was started. The test consisted of swimming while supporting loads of 4.5, 5.0, 5.5, 6.0 and 7.0% of body weight. Each exercise load lasted 5 min and was followed by a 30-s rest during which blood samples were taken. The blood lactate minimum was determined from a zero-gradient tangent to a spline function fitting the blood lactate vs workload curve. AT was estimated to be 4.95 ± 0.10% of body weight while interpolated blood lactate was 7.17 ± 0.16 mmol/l. These results suggest the application of AT determination in animal studies concerning metabolism during exercise.
Resumo:
The lactate minimum test (LACmin) has been considered an important indicator of endurance exercise capacity and a single session protocol can predict the maximal steady state lactate (MLSS). The objective of this study was to determine the best swimming protocol to induce hyperlactatemia in order to assure the LACmin in rats (Rattus norvegicus), standardized to four different protocols (P) of lactate elevation. The protocols were PI: 6 min of intermittent jumping exercise in water (load of 50% of the body weight - bw); P2: two 13% bw load swimming bouts until exhaustion (thin); P3: one thin 13% bw load swimming bout; and P4: two 13% bw load swimming bouts (1st 30 s, 2nd to thin), separated by a 30 s interval. The incremental phase of LACmin beginning with initial loads of 4% bw, increased in 0.5% at each 5 min. Peak lactate concentration was collected after 5, 7 and 9 min (mmol L-1) and differed among the protocols P 1 (15.2 +/- 0.4, 14.9 +/- 0.7, 14.8 +/- 0.6) and P2 (14.0 +/- 0.4, 14.9 +/- 0.4, 15.5 +/- 0.5) compared to P3 (5.1 +/- 0.1, 5.6 +/- 0.3, 5.6 +/- 0.3) and P4 (4.7 +/- 0.2, 6.8 +/- 0.2, 7.1 +/- 0.2). The LACmin determination success rates were 58%, 55%, 80% and 91% in P1, P2, P3 and P4 protocols, respectively. The MLSS did not differ from LACmin in any protocol. The LACmin obtained from P4 protocol showed better assurance for the MLSS identification in most of the tested rats. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Several studies have demonstrated that caffeine improves endurance exercise performance but the mechanisms are not fully understood. Possibilities include increased free fatty acid (FFA) oxidation with consequent sparing of muscle glycogen as well as enhancement of neuromuscular function during exercise. The present study was designed to investigate the effects of caffeine on liver and muscle glycogen of 3-month old, male Wistar rats (250-300 g) exercising by swimming. Caffeine (5 mg/kg) dissolved in saline (CAF) or 0.9% sodium chloride (SAL) was administered by oral intubation (1 mu l/g) to fed rats 60 min before exercise. The rats (N = and-IO per group) swam bearing a load corresponding to 5% body weight for 30 or 60 min. FFA levels were significantly elevated to 0.475 +/- 0.10 mEq/l in CAF compared to 0.369 +/- 0.06 mEq/l in SAL rats at the beginning of exercise. During exercise, a significant difference in FFA levels between CAF and SAL rats was observed at 30 min (0.325 +/- 0.06 vs 0.274 +/- 0.05 mEq/l) but not at 60 min (0.424 +/- 0.13 vs 0.385 +/- 0.10 mEq/l). Blood glucose showed an increase due to caffeine only at the end of exercise (CAF = 142.1 +/- 27.4 and SAL = 120.2 +/- 12.9 mg/100 ml). No significant difference in liver or muscle glycogen was observed in CAF as compared to SAL rats, at rest or during exercise. Caffeine increased blood lactate only at the beginning of exercise (CAF = 2.13 +/- 0.2 and SAL = 1.78 +/- 0.2 mmol/l). These data indicate that caffeine (5 mg/kg) has no glycogen-sparing effect on rats exercising by swimming even though the FFA levels of CAF rats were significantly higher at the beginning of exercise.
Resumo:
The higher concentration during exercise at which lactate entry in blood equals its removal is known as maximal lactate steady state (MLSS) and is considered an important indicator of endurance exercise capacity. The aim of the present study was to determine MLSS in running rats. Adult male Wistar sedentary rats, which were selected and adapted to treadmill running for three weeks, were used. After becoming familiarized with treadmill running, the rats were submitted to five exercise tests at 15, 20, 25, 30 and 35 m/min velocities. The velocity sequence was distributed at random. Each test consisted of continuous running for 25 min at one velocity or until the exhaustion. Blood lactate was determined at rest and each 5 min of exercise to find the MLSS. The running rats presented MLSS at the 20 m/min velocity, with blood lactate of 3.9±1.1 mmol/L. At the 15 m/min velocity, the blood lactate also stabilized, but at a lower concentration (3.2±1.1 mmol/L). There was a progressive increase in blood lactate concentration at higher velocities, and some animals reached exhaustion between the 10 th and 25 th minute of exercise. These results indicate that the protocol of MLSS can be used for determination of the maximal aerobic intensity in running rats.