917 resultados para Ultra high energy cosmic rays
Resumo:
Ion acceleration resulting from the interaction of ultra-high intensity (2 x 10(20) W/cm(2)) and ultra-high contrast (similar to 10(10)) laser pulses with 0.05-10 mu m thick Al foils at normal (0 degrees) and 35 degrees laser incidence is investigated. When decreasing the target thickness from 10 mu m down to 0.05 mu m, the accelerated ions become less divergent and the ion flux increases, particularly at normal (0 degrees) laser incidence on the target. A laser energy conversion into protons of,similar to 6.5% is estimated at 35 degrees laser incidence. Experimental results are in reasonable agreement with theoretical estimates and can be a benchmark for further theoretical and computational work. (C) 2011 American Institute of Physics. [doi:10.1063/1.3643133]
Resumo:
High-energy irradiation of exoplanets has been identified to be a key influence on the stability of these planets' atmospheres. So far, irradiation-driven mass-loss has been observed only in two Hot Jupiters, and the observational data remain even more sparse in the super-Earth regime. We present an investigation of the high-energy emission in the CoRoT-7 system, which hosts the first known transiting super-Earth. To characterize the high-energy XUV radiation field into which the rocky planets CoRoT-7b and CoRoT-7c are immersed, we analyzed a 25 ks XMM-Newton observation of the host star. Our analysis yields the first clear (3.5σ) X-ray detection of CoRoT-7. We determine a coronal temperature of ≈ 3 MK and an X-ray luminosity of 3 × 1028 erg s-1. The level of XUV irradiation on CoRoT-7b amounts to ≈37 000 erg cm-2 s-1. Current theories for planetary evaporation can only provide an order-of-magnitude estimate for the planetary mass loss; assuming that CoRoT-7b has formed as a rocky planet, we estimate that CoRoT-7b evaporates at a rate of about 1.3 × 1011 g s-1 and has lost ≈4-10 earth masses in total.
Resumo:
Here we review the recent progress made in the detection, examination, characterisation and interpretation of oscillations manifesting in small-scale magnetic elements in the solar photosphere. This region of the Sun's atmosphere is especially dynamic, and importantly, permeated with an abundance of magnetic field concentrations. Such magnetic features can span diameters of hundreds to many tens of thousands of km, and are thus commonly referred to as the `building blocks' of the magnetic solar atmosphere. However, it is the smallest magnetic elements that have risen to the forefront of solar physics research in recent years. Structures, which include magnetic bright points, are often at the diffraction limit of even the largest of solar telescopes. Importantly, it is the improvements in facilities, instrumentation, imaging techniques and processing algorithms during recent years that have allowed researchers to examine the motions, dynamics and evolution of such features on the smallest spatial and temporal scales to date. It is clear that while these structures may demonstrate significant magnetic field strengths, their small sizes make them prone to the buffeting supplied by the ubiquitous surrounding convective plasma motions. Here, it is believed that magnetohydrodynamic waves can be induced, which propagate along the field lines, carrying energy upwards to the outermost extremities of the solar corona. Such wave phenomena can exist in a variety of guises, including fast and slow magneto-acoustic modes, in addition to Alfven waves. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate how wave motion is generated in the solar photosphere, which oscillatory modes are most prevalent, and the role that these waves play in supplying energy to various layers of the solar atmosphere.
Resumo:
The present work is an attempt to understand the characteristics of high energy ball milling on the structural, electrical and magnetic properties of some normal spinets in the ultra fine regime, Magnetism and magnetic materials have been a fascinating subject for the mankind ever since the discovery of lodestone. Since then, man has been applying this principle of magnetism to build devices for various applications. Magnetism can be classified broadly into five categories. They are diamagnetic, paramagnetic, ferromagnetic antiferromagnetic and ferrimagnetic. Of these, ferro and ferri magnetic materials assume great commercial importance due to their unique properties like appropriate magnetic characteristics, high resistivity and low eddy current losses. The emergence of nanoscience and nanotechnology during the last decade had its impact in the field of magnetism and magnetic materials too. Now, it is common knowledge that materials synthesized in the nanoregime exhibit novel and superlative properties with respect to their coarser sized counterparts in the micron regime. These studies reveal that dielectric properties can be varied appreciably by high-energy ball milling in nanosized zinc ferrites produced by coprecipitation method. A semi conducting behaviour was observed in these materials with the Oxygen vacancies acting as the main charge carrier for conduction, which was produced at the time of coprecipitation and milling. Thus through this study, it was possible to successfully investigate the finite size effects on the structural, electrical and magnetic properties of normal spinels in the ultra fine regime
Resumo:
Galactic cosmic ray (GCR) changes have been suggested to affect weather and climate, and new evidence is presented here directly linking GCRs with clouds. Clouds increase the diffuse solar radiation, measured continuously at UK surface meteorological sites since 1947. The ratio of diffuse to total solar radiation-the diffuse fraction, (DF)-is used to infer cloud, and is compared with the daily mean neutron count rate measured at Climax; Colorado from 1951-2000, which provides a globally representative indicator of cosmic rays. Across the UK, oil days of high cosmic ray flux (above 3600 X 10(2) neutron counts h(-1), which occur 87% of the time on average) compared with low cosmic ray flux, (i) the chance of an overcast day increases by (19 +/- 4)%; and (ii) the diffuse fraction increases by (2 +/- 0.3)%. During sudden transient reductions in cosmic rays (e.g. Forbush events), simultaneous decreases occur in the diffuse fraction. The diffuse radiation changes are; therefore; unambiguously due to cosmic rays. Although the statistically significant nonlinear cosmic ray effect is small, it will have a considerably larger aggregate effect on longer timescale (e.g. centennial) climate variations when day-to-day variability averages out.
Resumo:
The shadowing of cosmic ray primaries by the moon and sun was observed by the MINOS far detector at a depth of 2070 mwe using 83.54 million cosmic ray muons accumulated over 1857.91 live-days. The shadow of the moon was detected at the 5.6 sigma level and the shadow of the sun at the 3.8 sigma level using a log-likelihood search in celestial coordinates. The moon shadow was used to quantify the absolute astrophysical pointing of the detector to be 0.17 +/- 0.12 degrees. Hints of interplanetary magnetic field effects were observed in both the sun and moon shadow. Published by Elsevier B.V.
Resumo:
From direct observations of the longitudinal development of ultra-high energy air showers performed with the Pierre Auger Observatory, upper limits of 3.8%, 2.4%, 3.5% and 11.7% (at 95% c.l.) are obtained on the fraction of cosmic-ray photons above 2, 3, 5 and 10 EeV (1 EeV equivalent to 10(18) eV), respectively. These are the first experimental limits on ultra-high energy photons at energies below 10 EeV. The results complement previous constraints on top-down models from array data and they reduce systematic uncertainties in the interpretation of shower data in terms of primary flux, nuclear composition and proton-air cross-section. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The properties of galactic cosmic rays are investigated with the KASCADE-Grande experiment in the energy range between 10(14) and 10(18) eV. Recent results are discussed. They concern mainly the all-particle energy spectrum and the elemental composition of cosmic rays. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We investigate the potential of a future kilometer-scale neutrino telescope, such as the proposed IceCube detector in the South Pole, to measure and disentangle the yet unknown components of the cosmic neutrino flux, the prompt atmospheric neutrinos coming from the decay of charmed particles and the extra-galactic neutrinos in the 10 TeV to 1 EeV energy range. Assuming a power law type spectra, dphi(nu)/dE(nu)similar toalphaE(nu)(beta), we quantify the discriminating power of the IceCube detector and discuss how well we can determine magnitude (alpha) as well as slope (beta) of these two components of the high energy neutrino spectrum, taking into account the background coming from the conventional atmospheric neutrinos.
Resumo:
The present study suggests the use of high energy ball milling to mix (to dope) the phase MgB2 with the AlB2 crystalline structure compound, ZrB2, with the same C32 hexagonal structure than MgB 2, in different concentrations, enabling the maintenance of the crystalline phase structures practically unaffected and the efficient mixture with the dopant. The high energy ball milling was performed with different ball-to-powder ratios. The analysis of the transformation and formation of phases was accomplished by X-ray diffractometry (XRD), using the Rietveld method, and scanning electron microscopy. As the high energy ball milling reduced the crystallinity of the milled compounds, also reducing the size of the particles, the XRD analysis were influenced, and they could be used as comparative and control method of the milling. Aiming the recovery of crystallinity, homogenization and final phase formation, heat treatments were performed, enabling that crystalline phases, changed during milling, could be obtained again in the final product. © (2010) Trans Tech Publications.
Resumo:
Pós-graduação em Física - IFT
Resumo:
The origin of cosmic rays at all energies is still uncertain. In this paper, we present and explore an astrophysical scenario to produce cosmic rays with energy ranging from below 10(15) to 3 x 10(20) eV. We show here that just our Galaxy and the radio galaxy Cen A, each with their own galactic cosmic-ray particles but with those from the radio galaxy pushed up in energy by a relativistic shock in the jet emanating from the active black hole, are sufficient to describe the most recent data in the PeV to near ZeV energy range. Data are available over this entire energy range from the KASCADE, KASCADE-Grande, and Pierre Auger Observatory experiments. The energy spectrum calculated here correctly reproduces the measured spectrum beyond the knee and, contrary to widely held expectations, no other extragalactic source population is required to explain the data even at energies far below the general cutoff expected at 6 x 10(19) eV, the Greisen-Zatsepin-Kuz'min turnoff due to interaction with the cosmological microwave background. We present several predictions for the source population, the cosmic-ray composition, and the propagation to Earth which can be tested in the near future.
Resumo:
A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10(18) eV at the Pierre Auger Observatory is presented. This search is performed as a function of both declination and right ascension in several energy ranges above 10(18) eV, and reported in terms of dipolar and quadrupolar coefficients. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Assuming that any cosmic-ray anisotropy is dominated by dipole and quadrupole moments in this energy range, upper limits on their amplitudes are derived. These upper limits allow us to test the origin of cosmic rays above 10(18) eV from stationary Galactic sources densely distributed in the Galactic disk and predominantly emitting light particles in all directions.
Resumo:
The Time-Of-Flight (TOF) detector of ALICE is designed to identify charged particles produced in Pb--Pb collisions at the LHC to address the physics of strongly-interacting matter and the Quark-Gluon Plasma (QGP). The detector is based on the Multigap Resistive Plate Chamber (MRPC) technology which guarantees the excellent performance required for a large time-of-flight array. The construction and installation of the apparatus in the experimental site have been completed and the detector is presently fully operative. All the steps which led to the construction of the TOF detector were strictly followed by a set of quality assurance procedures to enable high and uniform performance and eventually the detector has been commissioned with cosmic rays. This work aims at giving a detailed overview of the ALICE TOF detector, also focusing on the tests performed during the construction phase. The first data-taking experience and the first results obtained with cosmic rays during the commissioning phase are presented as well and allow to confirm the readiness state of the TOF detector for LHC collisions.
Measuring energy spectra of TeV gamma-ray emission from the Cygnus region of our galaxy with Milagro
Resumo:
High energy gamma rays can provide fundamental clues to the origins of cosmic rays. In this thesis, TeV gamma-ray emission from the Cygnus region is studied. Previously the Milagro experiment detected five TeV gamma-ray sources in this region and a significant excess of TeV gamma rays whose origin is still unclear. To better understand the diffuse excess the separation of sources and diffuse emission is studied using the latest and most sensitive data set of the Milagro experiment. In addition, a newly developed technique is applied that allows the energy spectrum of the TeV gamma rays to be reconstructed using Milagro data. No conclusive statement can be made about the spectrum of the diffuse emission from the Cygnus region because of its low significance of 2.2 σ above the background in the studied data sample. The entire Cygnus region emission is best fit with a power law with a spectral index of α=2.40 (68% confidence interval: 1.35-2.92) and a exponential cutoff energy of 31.6 TeV (10.0-251.2 TeV). In the case of a simple power law assumption without a cutoff energy the best fit yields a spectral index of α=2.97 (68% confidence interval: 2.83-3.10). Neither of these best fits are in good agreement with the data. The best spectral fit to the TeV emission from MGRO J2019+37, the brightest source in the Cygnus region, yields a spectral index of α=2.30 (68% confidence interval: 1.40-2.70) with a cutoff energy of 50.1 TeV (68% confidence interval: 17.8-251.2 TeV) and a spectral index of α=2.75 (68% confidence interval: 2.65-2.85) when no exponential cutoff energy is assumed. According to the present analysis, MGRO J2019+37 contributes 25% to the differential flux from the entire Cygnus at 15 TeV.