137 resultados para URETHANE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Corticosteroid receptor modulation of mesoaccumbens dopamine neurotransmission is believed to be a key neurobiological mechanism mediating the effects of stress in addiction. Importantly, nucleus accumbens (NAc) subregions (core and shell) are reported to respond differentially to fluctuating basal levels of glucocorticoids, with dopaminergic responses in the core of the NAc being somewhat impervious to fluctuating levels of glucocorticoids relative to the shell. To investigate the corticosteroid receptor mechanisms mediating basal dopamine efflux in the core of the NAc, we have used chronoamperometry in combination with stearate-modified graphite paste electrodes in urethane anesthetized male Long–Evans rats during the peak and nadir of the circadian cycle. Blockade of ventral tegmental area low-affinity glucocorticoid (GR) or high-affinity mineralocorticoid (MR) receptors with mifepristone (1 μg/μl) or spironolactone (0.2 μg/μl), respectively, indicated that endogenous phase-dependent corticosteroid receptor activation (GRs during peak; MRs during nadir) facilitated extracellular NAc dopamine efflux. Conversely, the alternate receptor's actions appeared inhibitory at these time points (MRs during peak; GRs during nadir). Pharmacological activation of either the GR or MR with corticosterone (2 μg/μl) or aldosterone (0.2 μg/μl), respectively, potentiated NAc dopamine efflux, irrespective of circadian phase. Together, these data suggest that dominant corticosteroid receptor activation stimulates tonic mesoaccumbens dopamine transmission, enabling MRs and GRs to differentially maintain basal NAc dopamine release over the course of the circadian cycle. This points to an important molecular mechanism through which relatively stable NAc core dopamine extracellular levels could be maintained in the face of fluctuating corticosterone circadian rhythms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different types of network oscillations occur in different behavioral, cognitive, or vigilance states. The rodent hippocampus expresses prominentoscillations atfrequencies between 4 and 12Hz,which are superimposed by phase-coupledoscillations (30 –100Hz).These patterns entrain multineuronal activity over large distances and have been implicated in sensory information processing and memory formation. Here we report a new type of oscillation at near- frequencies (2– 4 Hz) in the hippocampus of urethane-anesthetized mice. The rhythm is highly coherent with nasal respiration and with rhythmic field potentials in the olfactory bulb: hence, we called it hippocampal respiration-induced oscillations. Despite the similarity in frequency range, several features distinguish this pattern from locally generatedoscillations: hippocampal respiration-induced oscillations have a unique laminar amplitude profile, are resistant to atropine, couple differentlytooscillations, and are abolished when nasal airflow is bypassed bytracheotomy. Hippocampal neurons are entrained by both the respiration-induced rhythm and concurrent oscillations, suggesting a direct interaction between endogenous activity in the hippocampus and nasal respiratory inputs. Our results demonstrate that nasal respiration strongly modulates hippocampal network activity in mice, providing a long-range synchronizing signal between olfactory and hippocampal networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The search for sustainable technologies that can contribute to reduce energy consumption is a great challenge in the field of insulation materials. In this context, composites manufactured from vegetal sources are an alternative technology. The principal objectives of this work are the development and characterization of a composite composed by the rigid polyurethane foam derived from castor oil (commercially available as RESPAN D40) and sisal fibers. The manufacture of the composite was done with expansion controlled inside a closed mold. The sisal fibers where used in the form of needlepunched nonwoven with a mean density of 1150 g/m2 and 1350 g/m2. The composite characterization was performed through the following tests: thermal conductivity, thermal behavior, thermo gravimetric analysis (TG/DTG), mechanical strength in compression and flexural, apparent density, water absorption in percentile, and the samples morphology was analyzed in a MEV. The density and humidity percentage of the sisal fiber were also determined. The thermal conductivity of the composites was higher than the pure polyurethane foam, the addition of nonwoven sisal fibers will become in a higher level of compact foam, reducing empty spaces (cells) of polyurethane, inducing an increase in k value. The apparent density of the composites was higher than pure polyurethane foam. In the results of water absorption tests, was seen a higher absorption percent of the composites, what is related to the presence of sisal fibers which are hygroscopic. From TG/DTG results, with the addition of sisal fibers reduced the strength to thermal degradation of the composites, a higher loss of mass was observed in the temperature band between 200 and 340 °C, related to urethane bonds decomposition and cellulose degradation and its derivatives. About mechanical behavior in compression and flexural, composites presented a better mechanical behavior than the rigid polyurethane foam. An increase in the amount of sisal fibers induces a higher rigidity of the composites. At the thermal behavior tests, the composites were more mechanically and thermally resistant than some materials commonly used for thermal insulation, they present the same or better results. The density of nonwoven sisal fiber had influence over the insulation grade; this means that, an increaser in sisal fiber density helped to retain the heat

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nucleus of the solitary tract (NTS) is the site of the first synapse of cardiovascular afferent fibers in the central nervous system. Important mechanisms for cardiovascular regulation are also present in the caudal pressor area (CPA) localized at the caudal end of the ventrolateral medulla. In the present study we sought to investigate the role of the commissural subnucleus of the NTS (commNTS) on pressor and tachycardic responses induced by L-glutamate injected into the CPA. Male Holtzman rats (n=8 rats/group) anesthetized with urethane (1.2 g/kg of body weight, iv) received injections of the GABAA receptor agonist muscimol into the commNTS. Unilateral injection of L-glutamate (10 nmol/ 100 nL) into the CPA increased mean arterial pressure (MAP, 31 4 mm Hg, vs. saline: 3 +/- 2 mm Hg) and heart rate (HR, 44 8 bpm, vs. saline: 10 7 bpm). inhibition of commNTS neurons with muscimol (120 pmol/60 nL) abolished the increase in MAP (9 4 mm Hg) and HR (17 7 bpm) produced by L-glutamate into the CPA. The present results suggest that the pressor and tachycardic responses to CPA activation are dependent on commNTS mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cholinergic agonist pilocarpine injected intraperitoneally (ip) increases mean arterial pressure (MAP) and superior mesenteric (SM) vascular resistance and reduces submandibular/sublingual gland (SSG) vascular resistance. In the present study, we investigated the effects of electrolytic lesions of the anteroventral third ventricle (AV3V) region on the changes in MAP, SM, and SSG vascular resistances induced by ip pilocarpine. Male Holtzman rats anesthetized with urethane (1.0 g/kg) and chloralose (60 mg/kg) were submitted to sham or electrolytic AV3V lesions and bad pulsed Doppler flow probes implanted around the arteries. Contrary to sham rats, in 1-h and 2-day AV3V-lesioned rats, pilocarpine (4 mu mol/kg) ip decreased MAP (-41 +/- 4 and -26 4 mm Hg, respectively, vs. sham: 19 +/- 4 mm Hg) and SM (-48 +/- 11 and -45 +/- 10%, respectively, vs. sham: 41 +/- 10%) and hindlimb vascular resistances (-65 +/- 32 and -113 +/- 29%, respectively, vs. sham: 19 +/- 29%). In 7-day AV3V-lesioned rats, pilocarpine produced no changes on MAP and SM and hindlimb vascular resistances. Similar to sham rats, pilocarpine reduced SSG vascular resistance 1 h after AV3V lesions (-46 +/- 6%, vs. sham: -40 +/- 6%), but it produced no effect 2 days after AV3V lesions and increased SSG vascular resistance (37 6%) in 7-day AV3V-lesioned rats. The responses to ip pilocarpine were similar in 15-day sham and AV3V-lesioned rats. The cholinergic antagonist atropine methyl bromide (10 nmol) iv slightly increased the pressor response to ip pilocarpine in sham rats and abolished for 40 min the fall in MAP induced by ip pilocarpine in 1-h AV3V-lesioned rats. The results suggest that central mechanisms dependent on the AV3V region are involved in the pressor responses to ip pilocarpine. Although it was impaired 2 and 7 days after AV3V lesions, pilocarpine-induced salivary gland vasodilation was not altered 1 h after AV3V lesions which suggests that this vasodilation is not directly dependent on the AV3V region. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, we investigated the effects of inhibition of the caudal ventrolateral medulla (CVLM) with the GABA(A) agonist muscimol combined with the blockade of glutamatergic mechanism in the nucleus of the solitary tract (NTS) with kynurenic acid (kyn) on mean arterial pressure (MAP), heart rate (HR), and regional vascular resistances. In male Holtzman rats anesthetized intravenously with urethane/chloralose, bilateral injections of muscimol (120 pmol) into the CVLM or bilateral injections of kyn (2.7 nmol) into the NTS alone increased MAP to 186 +/- 11 and to 142 +/- 6 mmHg, respectively, vs. control: 105 +/- 4 mmHg; HR to 407 +/- 15 and to 412 +/- 18 beats per minute (bpm), respectively, vs. control: 352 +/- 12 bpm; and renal, mesenteric and hindquarter vascular resistances. However, in rats with the CVLM bilaterally blocked by muscimol, additional injections of kyn into the NTS reduced MAP to 88 +/- 5 mmHg and mesenteric and hindquarter vascular resistances below control baseline levels. Moreover, in rats with the glutamatergic mechanisms of the NTS blocked by bilateral injections of kyn, additional injections of muscimol into the CVLM also reduced MAP to 92 +/- 2 mmHg and mesenteric and hindquarter vascular resistances below control baseline levels. Simultaneous blockade of NTS and CVLM did not modify the increase in HR but also abolished the increase in renal vascular resistance produced by each treatment alone. The results suggest that important pressor mechanisms arise from the NTS and CVLM to control vascular resistance and arterial pressure under the conditions of the present study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1 Nitric oxide (NO) and alpha(2)-adrenoceptor and imidazoline agonists such as moxonidine may act centrally to inhibit sympathetic activity and decrease arterial pressure.2 In the present study, we investigated the effects of pretreatment with L-NAME ( NO synthesis inhibitor), injected into the 4th ventricle (4th V) or intravenously (i.v.), on the hypotension, bradycardia and vasodilatation induced by moxonidine injected into the 4th V in normotensive rats.3 Male Wistar rats with a stainless steel cannula implanted into the 4th V and anaesthetized with urethane were used. Blood flows were recorded by use of miniature pulsed Doppler flow probes implanted around the renal, superior mesenteric and low abdominal aorta.4 Moxonidine (20 nmol), injected into the 4th V, reduced the mean arterial pressure (-42+/-3 mmHg), heart rate (-22+/-7 bpm) and renal (-62+/-15%), mesenteric (-41+/-8%) and hindquarter (-50+/-8%) vascular resistances.5 Pretreatment with L-NAME (10 nmol into the 4th V) almost abolished central moxonidine-induced hypotension (-10+/-3 mmHg) and renal (-10+/-4%), mesenteric (-11+/-4%) and hindquarter (-13+/-6%) vascular resistance reduction, but did not affect the bradycardia (-18+/-8 bpm).6 the results indicate that central NO mechanisms are involved in the vasodilatation and hypotension, but not in the bradycardia, induced by central moxonidine in normotensive rats. British Journal of Pharmacology (2004).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The anteroventral third ventricle (AV3V) region is a critical area of the forebrain, acting on fluid and electrolyte balance and maintaining cardiovascular homeostasis. The purpose of this study was to determine the effects of lesions to the anteroventral third ventricle region on cardiovascular responses to intravenous hypertonic saline (HS) infusion, Male Wistar rats were anesthetized with urethane. The femoral artery and jugular vein were cannulated to record mean arterial pressure (MAP) and infuse hypertonic saline (3M NaCl, 0.18 mL/100 g bw, over 1 min), respectively. Renal blood flow (RBF) was recorded by ultrasonic transit-time flow probes. Renal vascular conductance (RVC) was calculated as renal blood flow to mean arterial pressure ratio and expressed as percentage of baseline. After hypertonic saline infusion in sham animals, renal blood flow and renal vascular conductance increased to 137+10% and 125+7% (10 min), and 141 +/- 10% and 133 +/- 10% (60 min), respectively. Increases in mean arterial pressure (20-min peak: 12 +/- 3 mm Hg) were also observed. An acute lesion in the AV3V region (DC, 2 mA 25s) 30 min before infusion abrogated the effects of hypertonic saline. Mean arterial pressure was unchanged and renal blood flow and renal vascular conductance were 107 +/- 7% and 103 +/- 6% (10 min), and 107 +/- 4 and 106 +/- 4% (60 min), respectively. Marked tachycardia was observed immediately after lesion. Responses of chronic sham or lesioned rats were similar to those of acute animals. However, in chronic lesioned rats, hypertonic saline induced sustained hypertension. These results demonstrate that integrity of the AV3V region is essential for the renal vasodilation that follows acute changes in extracellular fluid compartment composition. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several findings suggest that catecholaminergic neurones in the caudal ventrolateral medulla (CVLM) contribute to body fluid homeostasis and cardiovascular regulation. The present study sought to determine the effects of lesions of these neurones on the cardiovascular responses induced by changes in circulating volume. All experiments were performed in male Wistar rats (320-360 g). Medullary catecholaminergic neurones were lesioned by microinjection of anti-dopamine beta-hydroxylase-saporin (6.3 ng in 60 nl; SAP rats, n = 14) into the CVLM, whereas sham rats received microinjections of free saporin (1.3 ng in 60 nl, n = 15). Two weeks later, rats were anaesthetized (urethane, 1.2 g kg(-1), I.V..), instrumented for measurement of mean arterial pressure (MAP), renal blood flow (RBF) and renal vascular conductance (RVC), and infused with hypertonic saline (HS; 3 M NaCl, 0.18 ml (100 g body weight)(-1), I.V.) or an isotonic solution (volume expansion, VE; 4% Ficoll, 1% of body weight, I.V.). In sham rats, HS induced sustained increases in RBF and RVC (155 +/- 7 and 145 +/- 6% of baseline, at 20 min after HS). In SAP rats, RBF responses to HS were blunted (125 +/- 6%) and RVC increases were abolished (108 +/- 5%) 20 min after HS. Isotonic solution increased RBF and RVC in sham rats (149 +/- 10 and 145 +/- 12% of baseline, respectively, at 20 min). These responses were reduced in SAP rats (131 +/- 6 and 126 +/- 5%, respectively, at 20 min). Pressor responses to HS were larger in SAP rats than in sham rats (17 +/- 5 versus 9 +/- 2 mmHg, at 20 min), whereas during VE these responses were similar in both groups (6 +/- 3 versus 4 +/- 6 mmHg, at 20 min). Immunohistochemical analysis indicates that microinjections of anti-D beta H-saporin produced extensive destruction within the A1/C1 cell groups in the CVLM. These results suggest that catecholaminergic neurones mediate the cardiovascular responses to VE or increases in plasma sodium levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, we investigated the effects of pretreatment with N-G-nitro-L-arginine methyl ester (L-NAME) (nitric oxide synthase inhibitor) injected intravenously (IV) on the hypotension, bradycardia, and vasodilation produced by moxonidine (alpha(2)-adrenergic/imidazoline receptor agonist) injected into the fourth brain ventricle (4th V) in rats submitted to acute hypertension that results from baroreflex blockade by bilateral injections of kynurenic acid (kyn, glutamatergic receptor antagonist) into the nucleus of the solitary tract (NTS) or in normotensive rats. Male Wistar rats (n = 5 to 7/group) anesthetized with IV urethane (1.0 g kg(-1) of body weight) and a-chloralose (60mg kg(-1) of body weight) were used. Bilateral injections of kyn (2.7 nmol 100 nL(-1)) into the NTS increased baseline mean arterial pressure (148 +/- 11 mm Hg, vs. control: 102 +/- 4mm Hg) and baseline heart rate (417 +/- 11 bpm, vs. control: 379 +/- 6 bpm). Moxonidine (20 nmol mu L-1) into the 4th V reduced mean arterial pressure and heart rate to similar levels in rats treated with kyn into the NTS (68 +/- 9 mm Hg and 359 +/- 7 bpm) or in control normotensive rats (66 +/- 7 mm Hg and 362 +/- 8 bpm, respectively). The pretreatment with L-NAME (2 5 mu mol kg-1, IV) attenuated the hypotension produced by moxonidine into the 4th V in rats treated with kyn (104 +/- 6 mm Hg) or in normotensive rats (95 +/- 8 mm Hg), without changing bradycardia. Moxonidine into the 4th V also reduced renal, mesenteric, and hindquarter vascular resistances in rats treated or not with kyn into the NTS and the pretreatment with L-NAME IV reduced these effects of moxonidine. Therefore, these data indicate that nitric oxide mechanisms are involved in hypotension and mesenteric, renal, and hindquarter vasodilation induced by central moxonidine in normotensive and in acute hypertensive rats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our studies have focused on the effect of injection of L-NAME and sodium nitroprussiate (SNP) on the salivary secretion, arterial blood pressure, sodium excretion and urinary volume induced by pilocarpine which was injected into the medial septal area (MSA). Rats were anesthetized with urethane (1.25 g/kg b. wt.) and a stainless steel cannula was implanted into their MSA. The amount of saliva secretion was studied over a five-minute period after injection of pilocarpine into MSA. Injection of pilocarpine (10, 20, 40, 80, 160 mug/mul) into MSA produced a dose-dependent increase in salivary secretion. L-NG-nitro arginine methyl-esther (L-NAME) (40 mug/mul), a nitric oxide (NO) synthase inhibitor, was injected into MSA prior to the injection of pilocarpine into MSA, producing an increase in salivary secretion due to the effect of pilocarpine. Sodium nitroprussiate (SNP) (30 mug/mul) was injected into MSA prior to the injection of pilocarpine into MSA attenuating the increase in salivary secretion induced by pilocarpine. Medial arterial pressure (MAP) increase after injections of pilocarpine into the MSA. L-NAME injected into the MSA prior to injection of pilocarpine into MSA increased the MAP. SNP injected into the MSA prior to pilocarpine attenuated the effect of pilocarpine on MAP. Pilocarpine (40 mug/mul) injected into the MAS induced an increase in sodium and urinary excretion. L-NAME injected prior to pilocarpine into the MSA increased the urinary sodium excretion and urinary volume induced by pilocarpine. SNP injected prior to pilocarpine into the MSA decreased the sodium excretion and urinary volume induced by pilocarpine. All these roles of pilocarpine depend on the release of nitric oxide into the MSA. We may also conclude that the MSA is involved with the cholinergic excitatory mechanism that induce salivary secretion, increase in MAP and increase in sodium excretion and urinary volume. (C) 2002 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study we investigated the effects of electrolytic lesions of the lateral hypothalamus (LH) in the salivation induced by intracerebroventricular (i.c.v.) or intraperitoneal (i.p.) injection of the cholinergic agonist pilocarpine. Rats with sham or LH lesions and stainless steel cannulas implanted into the lateral ventricle (LV) were used. In rats anesthetized with urethane (1.25 mg/kg of body weight) saliva was collected using pre-weighed cotton balls inserted in the animal mouth during a period of 7 min following i.c.v. or i.p. injection of pilocarpine. Injection of pilocarpine (1 mg/kg of body weight) i.p. in sham-operated rats (6 h, 2, 7, and 15 days after the surgery) induced salivation (497+/-24, 452+/-26, 476+/-30, and 560+/-75 mg/7 min, respectively). The effects of i.p. pilocarpine was reduced 6 h, 2 and 7 days after LH lesions (162+/-37, 190+/-32, and 229+/-27mg/7 min, respectively), not 15 days after LH lesions (416+/-89mg/7 min). Injection of pilocarpine (120 mug/mul) i.c.v., in sham-operated rats (6 h, 2, 7, and 15 days after the surgery) also produced salivation (473 20, 382 16, 396 14, and 427 47 mg/7 min, respectively). The salivation induced by i.c.v. pilocarpine was also reduced 6 h, 2 and 7 days after LH lesions (243+/-19, 278+/-24, and 295+/-27 mg/7 min, respectively), not 15 days after LH lesions (385 48 mg/7 min). The present results show the participation of the LH in the salivation induced by central or peripheral injection of pilocarpine in rats, reinforcing the involvement of central mechanisms on pilocarpine-induced salivation. (C) 2002 Elsevier B.V. All rights reserved.