261 resultados para Twinning


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deformation behaviour of two single phase binary alloys, Mg-5Y and Mg-10Y, have been examined. In compression, two twin types were observed, the common {101¯2} twin as well as the less common {112¯1} extension twin. It is shown that the {112¯1} twin is much less sensitive to solute concentration than the {101¯2} twin, and it is suggested that the simple atomic shuffle of the {112¯1} twin reduces the solute strengthening imparted by Y additions. The common {101¯2} twin showed significant hardening as a result of alloying with Y. An analysis of solute behaviour has indicated that of the four chemical parameters investigated, i.e. atomic size, shear modulus, electronegativity and solute distribution, it appears to be the larger atomic radius of Y compared to Mg that increases the stress required to activate the {101¯2} twin. It is suggested that the large atomic radius inhibits the atomic shuffling process which accompanies the twinning shear in this twin type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an investigation of the effect of deformation twinning on the visco-plastic response and stress localization in a low stacking fault energy twinning-induced plasticity (TWIP) steel under uniaxial tension loading. The three-dimensional full field response was simulated using the fast Fourier transform method. The initial microstructure was obtained from a three dimensional serial sectionusing electron backscatter diffraction. Twin volume fraction evolution upon strain was measured so the hardening parameters of the simple Voce model could be identified to fit both the stress-strain behavior and twinning activity. General trends of texture evolution were acceptably predicted including the typical sharpening and balance between the 1 1 1 fiber and the 1 0 0 fiber. Twinning was found to nucleate preferentially at grain boundaries although the predominant twin reorientation scheme did not allow spatial propagation to be captured. Hot spots in stress correlated with the boundaries of twinned voxel domains, which either impeded or enhanced twinning based on which deformation modes were active locally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract A model for tensile twinning during the compression of rod textured magnesium is developed based on the idea that these twins nucleate at grain boundaries and that when the twin number density per grain is low these twins readily give rise to the formation of other 'interaction' twins in adjacent grains. Experimental observations of twin aspect ratios measured at a single grain size and twin number densities measured over four grain sizes were used to determine model material parameters. Using these, the model provides reasonable predictions for the observed magnitudes and trends for the following observations:Effect of grain size and stress on twin volume fraction, fractional twin length and the fraction of twin contact.Effect of grain size on the yield stress.Effect of grain size on the general shape of the stress-strain curve at low strains. A parametric study shows the model to be quite robust but that it is particularly sensitive to the value of the exponent assumed for the twin nucleation rate law. It is seen that preventing the formation of interaction twins provides an important avenue for hardening and that the flow stress is also particularly sensitive to the relaxation of the twin back stresses. The model shows the importance of taking microstructure into account when modelling twinning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoindentation was performed in selected grain orientations close to [. 112-0] and [. 101-0] in magnesium alloy Mg-3Al-1Zn. The atomic force microscopy (AFM) and electron backscatter diffraction (EBSD) were used to examine the nanoindentation imprint. Two critical events, yielding and pop-in were observed in the depth-load curves. Slip trace analysis suggests that basal slip is responsible for yielding. The following pop-in events at higher loads are associated with the appearance {. 101-2} twins on the surface. The critical resolved shear stress (CRSS) was estimated to be in the range of 220-400. MPa for the initiation of basal slip.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Mg-5%Zn alloy has been aged to form c-axis rod precipitates which are known to increase strength. Micropillar compression tests were carried out in the precipitate-free and aged samples to investigate the effects of these precipitates on twinning and slip in magnesium alloys. Basal slip, pyramidal slip and {101¯2} twinning were selectively activated by compressing micropillars in the [112¯3], [0 0 0 1] and [112¯0] orientations, respectively. It has been found that precipitation causes moderate hardening of the basal slip system, and also significantly increases the work hardening rate. The compression of [112¯0] initiated twinning, but the present experiments were dominated by twin nucleation, rather than growth. It was found that the effect of precipitation on twin nucleation was negligible. Precipitation had little effect on specimens compressed in the c-axis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 This thesis contains fundamental studies of the deformation mechanisms of the third generation steel at different deformation temperatures. To analyse the microstructure of the steel a unique characterisation technique was implemented for the first time. These analyses provided with vital parameters for modelling the stress-strain behaviour of the steel at different deformation temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, the effect of precipitate characteristics on {101-2} extension twinning have been studied in a Z6 magnesium alloy. A strongly textured Z6 alloy plate was mechanically tested in twinning dominated orientation in solution treated and aged states. Optical microscopy, transmission electron microscopy (TEM) and visco-plastic self consistent (VPSC) modelling are used to examine the effect of precipitate characteristics on twinning. The yield stress was observed to increase by ~80. MPa during ageing and it was estimated that CRSS for twinning increased by ~29. MPa based on VPSC simulations. The increment of twin system strengthening can be attributed to back stress generated by elastically deforming particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An as-cast austenitic stainless steel was hot deformed at 1173 K, 1223 K, and 1373 K (900 °C, 950 °C, and 1100 °C) to a strain of 1 with a strain rate of 0.5 or 5 s−1. The recrystallised fraction is observed to be dependent on dynamic recrystallisation (DRX). DRX grains nucleated at the initial stages of recrystallization have similar orientation to that of the deformed grains. With increasing deformation, Cube texture dominates, mainly due to multiple twinning and grain rotation during deformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructural evolution of an AZ31 rolled sheet during dynamic deformation at strain rates of ∼103 s−1 has been investigated by electron backscatter diffraction, X-ray and neutron diffraction. The influence of orientation on the predominant deformation mechanisms and on the recovery processes taking place during deformation has been systematically examined. The results have been compared with those corresponding to the same alloy tested quasi-statically under equivalent conditions. It has been found that strain rate enhances the activation of extension twinning dramatically, while contraction and secondary twinning are not significantly influenced. The polarity of extension twinning is even reversed in some grains under selected testing conditions. Significant grain subdivision by the formation of geometrically necessary boundaries (GNBs) takes place during both quasi-static and dynamic deformation of this AZ31 alloy. It is remarkable that GNBs of high misorientations form even at the highest strain rates. The phenomenon of recovery has been found to be orientation dependent

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is generally accepted that growth of eutectic silicon in aluminium-silicon alloys occurs by a twin plane re-entrant edge (TPRE) mechanism. It has been proposed that modification of eutectic silicon by trace additions occurs due to a massive increase in the twin density caused by atomic effects at the growth interface. In this study, eutectic microstructures and silicon twin densities in samples modified by elemental additions of barium (Ba), calcium (Ca), yttrium (Y) and ytterbium (Yb) (elements chosen due to a near-ideal atomic radii for twinning) in an A356.0 alloy have been determined by optical microscopy, thermal analysis, X-ray diffractometry (XRD) and transmission electron microscopy (TEM). Addition of barium or calcium caused the silicon structure to transform to a fine fibrous morphology, while the addition of yttrium or ytterbium resulted in a refined plate-like eutectic structure. Twin densities in all modified samples are higher than in unmodified alloys, and there are no significant differences between fine fibrous modification (by Ba and Ca) and refined plate-like modification (by Y and Yb). The twin density in all modified samples is less than expected based on the predictions by the impurity induced twining model. Based on these results it is difficult to explain the modification with Ba, Ca, Y and Yb by altered twin densities alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnesium-based alloy Mg–9Al–1Zn has been extruded and heat treated to produce a dense population of lamellar plate-shaped particles. In compression with a testing orientation well aligned for prolific {1012} twinning, precipitation resulted in a significant increase in the yield point, but there was no change in the volume fraction of twins that were produced. It is proposed that the larger number of smaller twins observed in the aged condition is the result of inhibition of twin growth by the particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a high-manganese Fe-23Mn-1.5Al-0.3C Twinning-Induced Plasticity (TWIP) steel was subjected to plastic shear deformation using Equal-Channel Angular Pressing (ECAP) at 300 °C following route BC and additional annealing. The microstructure evolution during both deformation by ECAP and subsequent annealing was investigated and correlated with the mechanical properties. The successive grain refinement during ECAP was promoted by two parallel mechanisms, namely dislocation driven grain fragmentation and twin fragmentation, and accounted for the ultra-high strength. In addition, due to the relatively low volume fraction of deformation twins after ECAP at 300 °C, further contribution of deformation twinning during room temperature deformation allowed additional work-hardening capacity and elongation. During subsequent recovery annealing the ultra-fine grains and deformation twins were thermally stable, which supported retainment of the high yield strength along with regained uniform elongation. For the first time, the texture evolution during ECAP and during the following heat treatment was analyzed. After 1, 2, and 4 ECAP passes a transition texture with the characteristic texture components of both high- and low-SFE materials developed. During the following heat treatment the texture evolution proceeded similar to that observed in the same material after cold rolling. Retaining of the ECAP texture components due to oriented nucleation at grain boundaries and triple junctions as well as annealing twinning accounted for the formation of a weak, retained ECAP texture after recrystallization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper theoretically and systematically investigates: (1) the effect of local transformed strains within deformation twinning on twin intersection; (2) the fracture mode based on type I co-zone tensile twin intersection in coarse-grained magnesium alloys, as well as the impacts of twin intersection and grain diameter on interfacial crack nucleation along twin boundaries; and (3) the influence of the local stresses arising from the encountered twin bands on crack growth. A novel dislocation-based strain nucleus model and a Green's function method, which are applicable to any material with local transformations in which elastic properties are reasonably approximated as isotropic, are specifically employed to model the concentrated transformed strain and calculate the local stress field resulting from deformation twinning and the stress intensity factors at crack tips in the magnesium alloys, respectively. In addition, an electron backscatter diffraction (EBSD) measurement is provided for crack nucleation originating from Type I co-zone tensile twin intersection. The theoretical modeling indicates: (i) the local strains within barrier twins strongly dictate the growth of incident twins and enhance the twin propagation stress; (ii) larger grains favor brittle fracture. More specifically, the dislocation reactions and pile-ups at the junctions between tensile twins can result in interfacial crack nucleation and growth along the twin boundaries, which is a brittle fracture mode based on lower twinning stress and stress concentration in the coarse-grained magnesium alloys; and (iii) the direction of crack propagation is easily changed by high-density twin bands and twin intersections owing to the local strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The twinning and de-twinning processes within grains of nanotwinned copper (nt-Cu) are schematically demonstrated using the concept of wedge disclination quadrupoles. The stable twin nucleus size and the equilibrium equation of the applied shear stress and twin width during twin growth are obtained. The dependence of the critical resolved shear stress for twinning on the grain size, which conforms to the classic Hall–Petch relationship, is theoretically modelled. Additionally, the disclination quadrupole model for de-twinning is used to interpret the strength softening in nt-Cu. Relative to the classic kinetic and energetic models, this novel approach is more compatible with the experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of basal plate precipitates on the hardening of basal slip and {101¯2} twinning modes was investigated for a non-aged and aged AZ91 alloy in the twin dominated strain paths. Exploiting in-situ synchrotron and laboratory based X-ray diffraction methodologies, we quantified the critical resolved shear stress (CRSS) for basal slip and twinning modes. The twin volume fraction changes were quantified from the intensity changes with applied load. We observed that the twin volume fraction changes with plastic strain is sensitive to the initial texture, while the relative hardening of different deformation modes are considered as a secondary effect. We also found that the twin interior stresses were significantly smaller and consistent with the high twin back stresses in the presence of precipitates. We propose, based on a simple analytical equation, that the leading edge of the propagating twin have a Burgers vector equivalent to 100 twinning dislocations and when the propagating twin is blocked by a precipitate, relatively high resolved stress is required for bowing the twin dislocation and hence the propagation of the twin occurs by the dissociation of the leading edge of the twinning dislocation.