984 resultados para Tropical soils - Management


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Cone Loading Test (CLT) consists of the execution of a load test on the piezocone probe in conjunction with the CPT test. The CLT yields the modulus ECLT, a parameter that can be used in the estimative of foundation settlement. It is also presented here the interpretation and the process to determine ECLT values from the stress-displacement curves obtained from cone loading tests. Several CLT tests were conducted at the experimental research site of São Paulo State University, Bauru-SP-Brazil. The geotechnical profile at the studied site is a brown to bright red slightly clayey fine sand, a tropical soil common to this region which is lateritic, unsaturated and collapsible. The results of CLT tests satisfactorily represent the behavior of the investigated soil. The penetrometric modulus ECLT for each depth was calculated considering the elastic behavior in the initial linear segment of the soil stress-strain curve. The ECLT moduli obtained for the various tests were compared to moduli obtained from PMT and DMT test results performed at same studied site. The shear modulus degradation curves obtained from the CLT tests are also presented. The comparison to PMT and DMT results indicates the CLT test is a viable complementary test to the CPT in the quest for better understanding stress-strain behavior of soils. Further, the CLT test provides a graphic visualization of the degradation of the shear modulus with increasing levels of strain. As a hybrid geotechnical test, CPT+CLT can be valuable in the investigation of non-conventional collapsible soils, whose literature lack reference parameters for the prediction of settlement in the design of foundations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A central goal in unsaturated soil mechanics research is to create a smooth transition between traditional soil mechanics approaches and an approach that is applicable to unsaturated soils. Undrained shear strength and the liquidity index of reconstituted or remoulded saturated soils are consistently correlated, which has been demonstrated by many studies. In the liquidity index range from 1 (at w(l)) to 0 (at w(p)), the shear strength ranges from approximately 2 kPa to 200 kPa. Similarly, for compacted soil, the shear strength at the plastic limit ranges from 150 kPa to 250 kPa. When compacted at their optimum water content, most soils have a suction that ranges from 20 kPa to 500 kPa; however, in the field, compacted materials are subjected to drying and wetting, which affect their initial suction and as a consequence their shear strength. Unconfined shear tests were performed on five compacted tropical soils and kaolin. Specimens were tested in the as-compacted condition, and also after undergoing drying or wetting. The test results and data from prior literature were examined, taking into account the roles of void ratio, suction, and relative water content. An interpretation of the phenomena that are involved in the development of the undrained shear strength of unsaturated soils in the contexts of soil water retention and Atterberg limits is presented, providing a practical view of the behaviour of compacted soil based on the concept of unsaturated soil. Finally, an empirical correlation is presented that relates the unsaturated state of compacted soils to the unconfined shear strength.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Soil sulfur (S) partitioning among the various pools and changes in tropical pasture ecosystems remain poorly understood. Our study aimed to investigate the dynamics and distribution of soil S fractions in an 8-year-old signal grass (Brachiaria decumbens Stapf.) pasture fertilized with nitrogen (N) and S. A factorial combination of two N rates (0 and 600?kg N ha1 y1, as NH4NO3) and two S rates (0 and 60?kg S ha1 y1, as gypsum) were applied to signal grass pastures during 2 y. Cattle grazing was controlled during the experimental period. Organic S was the major S pool found in the tropical pasture soil, and represented 97% to 99% of total S content. Among the organic S fractions, residual S was the most abundant (42% to 67% of total S), followed by ester-bonded S (19% to 42%), and C-bonded S (11% to 19%). Plant-available inorganic SO4-S concentrations were very low, even for the treatments receiving S fertilizers. Low inorganic SO4-S stocks suggest that S losses may play a major role in S dynamics of sandy tropical soils. Nitrogen and S additions affected forage yield, S plant uptake, and organic S fractions in the soil. Among the various soil fractions, residual S showed the greatest changes in response to N and S fertilization. Soil organic S increased in plots fertilized with S following the residual S fraction increment (16.6% to 34.8%). Soils cultivated without N and S fertilization showed a decrease in all soil organic S fractions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The availability and uptake of Cd by lettuce (Lactuca sativa L.) in two common tropical soils (before and after liming) were studied in order to derive human health-based risk soil concentration. Cadmium concentrations ranging from 1 to 12 mg kg(-1) were added to samples from a clayey Oxisol and a sandy-loam Ultisol under glasshouse conditions. After incubation, a soil sample was taken from each pot, the concentration of Cd in the soil was determined, lettuce was grown during 36 d, and the edible parts were harvested and analyzed for Cd. A positive linear correlation was observed between total soil Cd and the Cd concentration in lettuce. The amount of Cd absorbed by lettuce grown in the Ultisol was about twice the amount absorbed in the Oxisol. Liming increased the soil pH and slightly reduced Cd availability and uptake. CaCl2 extraction was better than DTPA to reflect differences in binding strength of Cd between limed and unlimed soils. Risk Cd concentrations in the Ultisol were lower than in the Oxisol, reflecting the greater degree of uptake from the Ultisol. The derived risk Cd values were dependent on soil type and the exposure scenario.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The soils on four lithologies (basaltic conglomerates, Bohio; Andesite; volcanoclastic sediments with basaltic agglomerates, Caimito volcanic; foraminiferal limestone, Caimito marine) on Barro Colorado Island (BCI) have high exchangeable Ca concentrations and cation-exchange capacities (CEC) compared to other tropical soils on similar parent material. In the 0–10 cm layer of 24 mineral soils, pH values ranged from 5.7 (Caimito volcanic and Andesite) to 6.5 (Caimito marine), concentrations of exchangeable Ca from 134 mmolc kg− 1 (Caimito volcanic) to 585 mmolc kg− 1 (Caimito marine), and cation exchange capacities from 317 mmolc kg− 1 (Caimito volcanic) to 933 mmolc kg− 1 (Caimito marine). X-ray diffractometry of the fraction < 2 μm revealed that smectites dominated the clay mineral assemblage in soil except on Caimito volcanic, where kaolinite was the dominant clay mineral. Exchangeable Ca concentrations decreased with increasing soil depth except on Caimito marine. The weathering indices Chemical Index of Alteration (CIA), Plagioclase Index of Alteration (PIA) and Weathering Index of Parker (WIP) determined for five soils on all geological formations, suggested that in contrast to expectation the topsoil (0–10 cm) appeared to be the least and the subsoil (50–70 cm) and saprolite (isomorphically weathered rock in the soil matrix) the most weathered. Additionally, the weathering indices indicated depletion of base cations and enrichment of Al-(hydr)oxides throughout the soil profile. Tree species did not have an effect on soil properties. Impeded leaching and the related occurrence of overland flow seem to be important in determining clay mineralogy. Our results suggest that (i) edaphic conditions favor the formation of smectites on most lithologies resulting in high CEC and thus high retention capacity for Ca and (ii) that there is an external source such as dust or sea spray deposition supplying Ca to the soils.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The incorporation of organic matter ( OM) in soils that are able to rapidly sorb applied phosphorus ( P) fertiliser reportedly increases P availability to plants. This effect has commonly been ascribed to competition between the decomposition products of OM and P for soil sorption sites resulting in increased soil solution P concentrations. The evidence for competitive inhibition of P sorption by dissolved organic carbon compounds, derived from the breakdown of OM, includes studies on the competition between P and (i) low molecular weight organic acids (LOAs), (ii) humic and fulvic acids, and (iii) OM leachates in soils with a high P sorption capacity. These studies, however, have often used LOAs at 1 - 100 mM, concentrations much higher than those in soils ( generally < 0.05 mM). The transience of LOAs in biologically active soils further suggests that neither their concentration nor their persistence would have a practical benefit in increasing P phytoavailability. Higher molecular weight compounds such as humic and fulvic acids also competitively inhibit P sorption; however, little consideration has been given to the potential of these compounds to increase the amount of P sorbed through metal - chelate linkages. We suggest that the magnitude of the inhibition of P sorption by the decomposition products of OM leachate is negligible at rates equivalent to those of OM applied in the field. Incubation of OM in soil has also commonly been reported as reducing P sorption in soil. However, we consider that the reported decreases in P sorption ( as measured by P in the soil solution) are not related to competition from the decomposition products of OM breakdown, but are the result of P release from the OM that was not accounted for when calculating the reduction in P sorption.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The concentration of ammonium-nitrogen (NH4+-N) frequently exceeds that of nitrate-N (NO3--N) in Australian wet tropical sugarcane soils. The amount of mineral N in soil is the net result of complex processes in the field, so the objective of this experiment was to investigate nitrification and ammonification in these soils under laboratory conditions. Aerobic and saturated incubations were performed for 1 week on 2 wet tropical soils. Net NO3--N increased significantly in both soils during both types of incubation. A second series of aerobic incubations of these soils treated with NH4+-N and inoculated with subtropical nitrifying soils was conducted for 48 days. Nitrification in the wet tropical soils was not significantly affected by inoculation, and virtually all added N was nitrified during the incubation period. Mineral N behaviour of the 48-day incubations was captured with the APSIM-SoilN model. As nitrification proceeded under laboratory conditions and was able to be captured by the model, it was concluded that nitrification processes in the wet tropical soils studied were not different from those in the subtropical soils. Processes that remove NO3- from the soil, such as leaching and denitrification, may therefore be important factors affecting the proportions of NH4+-N and NO3--N measured under field conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Soil organic matter (SOM) plays a key role in maintaining the productivity of tropical soils, providing energy and substrate for the biological activity and modifying the physical and chemical characteristics that ensure the maintenance of soil quality and the sustainability of ecosystems. This study assessed the medium-term effect (six years) of the application of five organic composts, produced by combining different agro-industrial residues, on accumulation and chemical characteristics of soil organic matter. Treatments were applied in a long-term experiment of organic management of mango (OMM) initiated in 2005 with a randomized block design with four replications. Two external areas, one with conventional mango cultivation (CMM) and the other a fragment of regenerating Caatinga vegetation (RCF), were used as reference areas. Soil samples were collected in the three management systems from the 0.00-0.05, 0.05-0.10, and 0.10-0.20 m layers, and the total organic carbon content and chemical fractions of organic matter were evaluated by determining the C contents of humin and humic and fulvic acids. Organic compost application significantly increased the contents of total C and C in humic substances in the experimental plots, mainly in the surface layer. However, compost 3 (50 % coconut bagasse, 40 % goat manure, 10 % castor bean residues) significantly increased the level of the non-humic fraction, probably due to the higher contents of recalcitrant material in the initial composition. The highest increases from application of the composts were in the humin, followed by the fulvic fraction. Compost application increased the proportion of higher molecular weight components, indicating higher stability of the organic matter.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Changes in soils management systems, including the application of green manure, are able to increase crop productivity. The aim of this study was to propose a soil management system with the use of green manure to improve the nutritional status and melon productivity in the submedian of the São Francisco Valley. The experiment was installed in Typic Plinthustalf and conducted in split plot. There were two soil tillage systems, tillage (T) and no tillage (NT), and three types of green manure (two vegetal cocktails: VC1- 75% legumes (L) + 25% non-legumes (NL); VC2- 25% L+ 75% NL and spontaneous vegetation (SV)). The experimental design was a randomised block with four replications. Fourteen species of legumes, grasses and oilseeds were used for the composition of the plant cocktails. We evaluated production of the dry shoot and root biomass and carbon and nutrient accumulation by green manures and melon plant. Data were subjected to analysis of variance and the treatment means were compared by Tukey´s test (P<0.05). Shoot biomass production and carbon and nutrient accumulation were higher in plant mixtures compared to spontaneous vegetation. The root system of the plant cocktails added larger quantities of biomass and nutrients to the soil to a depth of 0.60 m when compared to the spontaneous vegetation. The cultivation of plant cocktails with soil tillage, regardless of their composition, is a viable alternative for adding biomass and nutrients to the soil in melon crops in semi-arid conditions, providing productivity increases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In low fertility tropical soils, boron (B) deficiency impairs fruit production. However, little information is available on the efficiency of nutrient application and use by trees. Therefore, this work verified the effects of soil and foliar applications of boron in a commercial citrus orchard. An experiment was conducted with fertigated 4-year-old `Valencia` sweet orange trees on `Swingle` citrumelo rootstock. Boron (isotopically-enriched 10B) was supplied to trees once or twice in the growing season, either dripped in the soil or sprayed on the leaves. Trees were sampled at different periods and separated into different parts for total B contents and 10B/11B isotope ratios analyses. Soil B applied via fertigation was more efficient than foliar application for the organs grown after the B fertilization. Recovery of labeled B by fruits was 21% for fertigation and 7% for foliar application. Residual effects of nutrient application in the grove were observed in the year after labeled fertilizer application, which greater proportions derived from the soil supply.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nutrient dynamics in tropical soils sustaining forage grasses are still poorly understood. We conducted a study to evaluate the effect of combined N and S fertilizer rates on the growth of `Marandu` palisade grass [Brachiaria brizantha (Hochst. ex A. Rich.) Stapf], uptake of these elements from the soil by plants, soil organic matter concentration, soil pH, and the mineral and organic fractions of N and S in an Entisol. Combinations of five N rates (0, 100, 200, 300, and 400 g N m(-3)) with five S rates (0, 10, 20, 30, and 40 g S m(-3)) were evaluated in a partial 5 x 5 factorial in a pot experiment, with and without plants. Nitrogen and S were supplied as NH(4)NO(3) and CaSO(4)center dot 2H(2)O, respectively. The N addition in excess did not enhance the palisade grass production due to low plant-available Sin the soil. The supply of low rates of S with N greatly improved the overall N uptake efficiency by the forage plant. The contents of total N, NO(3)(-)-N, and NH(4)(+)-N in the soil varied with N rate and with N uptake by the plants. The association of palisade grass with S fertilization increased the ester-bonded S fraction in the soil. The results suggest that soil residual S could be a potential source of S for plants. Proper N and S fertilizer rates promoted increased grass production due to increased uptake of these nutrients and the dynamics of the organic N and S fractions and mineral fractions in this tropical soil.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Our objective was to develop a methodology to predict soil fertility using visible near-infrared (vis-NIR) diffuse reflectance spectra and terrain attributes derived from a digital elevation model (DEM). Specifically, our aims were to: (i) assemble a minimum data set to develop a soil fertility index for sugarcane (Sarcharum officinarum L.) (SFI-SC) for biofuel production in tropical soils; (ii) construct a model to predict the SFI-SC using soil vis-NIR spectra and terrain attributes; and (iii) produce a soil fertility map for our study area and assess it by comparing it with a green vegetation index (GVI). The study area was 185 ha located in sao Paulo State, Brazil. In total, 184 soil samples were collected and analyzed for a range of soil chemical and physical properties. Their vis-NIR spectra were collected from 400 to 2500 nm. The Shuttle Radar Topographic Mission 3-arcsec (90-m resolution) DEM of the area was used to derive 17 terrain attributes. A minimum data set of soil properties was selected to develop the SFI-SC. The SFI-SC consisted of three classes: Class 1, the highly fertile soils; Class 2, the fertile soils; and Class 3, the least fertile soils. It was derived heuristically with conditionals and using expert knowledge. The index was modeled with the spectra and terrain data using cross-validated decision trees. The cross-validation of the model correctly predicted Class 1 in 75% of cases, Class 2 in 61%, and Class 3 in 65%. A fertility map was derived for the study area and compared with a map of the GVI. Our approach offers a methodology that incorporates expert knowledge to derive the SFI-SC and uses a versatile spectro-spatial methodology that may be implemented for rapid and accurate determination of soil fertility and better exploration of areas suitable for production.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The utilization of tannery sludge in agricultural areas can be an alternative for its disposal and recycling. Despite this procedure may cause the loss of nitrogen by ammonia volatilization, there is no information about this process in tropical soils. For two years a field experiment was carried out in Rolandia (Parana State, Brazil), to evaluate the amount of NH(3) volatilization due to tannery sludge application on agricultural soil. The doses of total N applied varied from zero to 1200 kg ha(-1), maintained at the surface for 89 days, as usual in this region. The alkalinity of the tannery sludge used was equivalent to between 262 and 361 g CaCO(3) per kg. Michaelis-Menten equation was adequate to estimate NH(3)-N volatilization kinetics. The relation between total nitrogen applied as tannery sludge and the potentially volatilized NH(3)-N, calculated by the chemical-kinetics equation resulted in an average determination coefficient of 0.87 (P > 0.01). In this period, the amount of volatilized NH(3) was more intense during the first 30 days; the time to reach half of the maximum NH(3) volatilization (K(m)) was 13 an 9 days for the first and second experiments, respectively. The total loss as ammonia in the whole period corresponded in average to 17.5% of the total N applied and to 35% of the NH(4)(+)-N present in the sludge. If tannery sludge is to be surface applied to supply N for crops, the amounts lost as NH(3) must be taken into consideration. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background, aim, and scope The retention of potentially toxic metals in highly weathered soils can follow different pathways that variably affect their mobility and availability in the soil-water-plant system. This study aimed to evaluate the effects of pH, nature of electrolyte, and ionic strength of the solution on nickel (Ni) adsorption by two acric Oxisols and a less weathered Alfisol. Materials and methods The effect of pH on Ni adsorption was evaluated in surface and subsurface samples from a clayey textured Anionic `Rhodic` Acrudox ( RA), a sandy-clayey textured Anionic `Xantic` Acrudox (XA), and a heavy clayey textured Rhodic Kandiudalf (RK). All soil samples were equilibrated with the same concentration of Ni solution (5.0 mg L(-1)) and two electrolyte solutions (CaCl(2) or NaCl) with different ionic strengths (IS) (1.0, 0.1 and 0.01 mol L(-1)). The pH of each sample set varied from 3 to 10 in order to obtain sorption envelopes. Results and discussion Ni adsorption increased as the pH increased, reaching its maximum of nearly pH 6. The adsorption was highest in Alfisol, followed by RA and XA. Competition between Ni(2+) and Ca(2+) was higher than that between Ni(2+) and Na(+) in all soil samples, as shown by the higher percentage of Ni adsorption at pH 5. At pH values below the intersection point of the three ionic strength curves (zero point of salt effect), Ni adsorption was generally higher in the more concentrated solution (highest IS), probably due to the neutralization of positive charges of soil colloids by Cl(-) ions and consequent adsorption of Ni(2+). Above this point, Ni adsorption was higher in the more diluted solution (lowest ionic strength), due to the higher negative potential at the colloid surfaces and the lower ionic competition for exchange sites in soil colloids. Conclusions The effect of ionic strength was lower in the Oxisols than in the Alfisol. The main mechanism that controlled Ni adsorption in the soils was the ionic exchange, since the adsorption of ionic species varied according to the variation of pH values. The ionic competition revealed the importance of electrolyte composition and ionic strength on Ni adsorption in soils from the humid tropics. Recommendations and perspectives The presence of NaCl or CaCl(2) in different ionic strengths affects the availability of heavy metals in contaminated soils. Therefore, the study of heavy metal dynamics in highly weathered soils must consider this behavior, especially in soils with large amounts of acric components.