782 resultados para Trigeminal Ganglion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Microvascular decompression (MVD) is the reference technique for pharmacoresistant trigeminal neuralgia (TN). OBJECTIVE: To establish whether the safety and efficacy of Gamma Knife surgery for recurrent TN are influenced by prior MVD. METHODS: Between July 1992 and November 2010, 54 of 737 patients (45 of 497 with >1 year of follow-up) had a history of MVD (approximately half also with previous ablative procedure) and were operated on with Gamma Knife surgery for TN in the Timone University Hospital. A single 4-mm isocenter was positioned in the cisternal portion of the trigeminal nerve at a median distance of 7.6 mm (range, 3.9-11.9 mm) anterior to the emergence of the nerve. A median maximum dose of 85 Gy (range, 70-90 Gy) was delivered. RESULTS: The median follow-up time was 39.5 months (range, 14.1-144.6 months). Thirty-five patients (77.8%) were initially pain free in a median time of 14 days (range, 0-180 days), much lower compared with our global population of classic TN (P = .01). Their actuarial probabilities of remaining pain-free without medication at 3, 5, 7, and 10 years were 66.5%, 59.1%, 59.1%, and 44.3%. The hypoesthesia actuarial rate at 1 year was 9.1% and remained stable until 12 years (median, 8 months). CONCLUSION: Patients with previous MVD showed a significantly lower probability of initial pain cessation compared with our global population with classic TN (P = .01). The toxicity was low (only 9.1% hypoesthesia); furthermore, no patient reported bothersome hypoesthesia. However, the probability of maintaining pain relief without medication was 44.3% at 10 years, similar to our global series of classic TN (P = .85). ABBREVIATIONS: BNI, Barrow Neurological InstituteCI, confidence intervalCTN, classic trigeminal neuralgiaGKS, Gamma Knife surgeryHR, hazard ratioMVD, microvascular decompressionTN, trigeminal neuralgia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary sensory neurons in mouse dorsal root ganglia consist of diversified subpopulations which express distinct phenotypic characteristics such as substance P or calbindin D-28k. To determine whether neuronal phenotypes are altered or not in in vitro cultures carried out in a defined synthetic medium, dissociated dorsal root ganglion cells from newborn mice were grown in the alpha-modified minimum essential medium either supplemented with 10% fetal calf serum or serum-free. About 80% of the neurons survived after 5 days of culture in both media, but only 35% or 65% were rescued after 12 days in serum-free or fetal calf serum supplemented medium, respectively. The neuronal subpopulations expressing substance P or calbindin D-28k displayed similar morphological properties in both media and a higher resistance to culture conditions than the whole neuronal cell population, especially in serum-free medium. It is therefore concluded that a defined synthetic medium offers reproducible conditions to culture dorsal root ganglion cells for at least 5 days, stimulates the expression of substance P and enriches preferentially neuronal phenotypes expressing substance P or calbindin D-28k, for a longer period of culture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary sensory neurons which innervate neuromuscular spindles in the chicken are calbindin-immunoreactive. The influence exerted by developing skeletal muscle on the expression of calbindin immunoreactivity by subpopulations of dorsal root ganglion (DRG) cells in the chick embryo was tested in vitro in coculture with myoblasts, in conditioned medium (CM) prepared from myoblasts and in control cultures of DRG cells alone. Control cultures of DRG cells grown at the 6th embryonic day (E6) did not show any calbindin-immunostained ganglion cell. In coculture of myoblasts previously grown for 14 days, about 3% of calbindin-immunoreactive ganglion cells were detected while about 1% were observed in some cultures grown in CM. Fibroblasts from various sources were devoid of effect. Skin or kidney cells were more active than myoblasts to initiate calbindin expression by subpopulations of DRG cells in coculture or, to a lesser degree, in CM. The results suggest that cellular factors would rather induce calbindin expression in certain sensory neurons than ensure a selective neuronal survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuronal subpopulations of dorsal root ganglion (DRG) cells in the chicken exhibit carbonic anhydrase (CA) activity. To determine whether CA activity is expressed by DRG cells maintained in in vitro cultures, dissociated DRG cells from 10-day-old chick embryos were cultured on a collagen substrate. The influence exerted by environmental factors on the enzyme expression was tested under various conditions of culture. Neuron-enriched cell cultures and mixed DRG-cell cultures (including numerous non-neuronal cells) were performed either in a defined medium or in a horse serum-supplemented medium. In all the tested conditions, subpopulations of cultured sensory neurons expressed CA activity in their cell bodies, while their neurites were rarely stained; in each case, the percentage of CA-positive neurons declined with the age of the cultures. The number and the persistence of neurons possessing CA activity as well as the intensity of the reaction were enhanced by addition of horse serum. In contrast, the expression of the neuronal CA activity was not affected by the presence of non-neuronal cells or by the rise of CO2 concentration. Thus, the appearance and disappearance of neuronal subpopulations expressing CA activity may be decisively influenced by factors contained in the horse serum. The loss of CA-positive neurons with time could result from a cell selection or from genetic repression. Analysis of the time curves does not support a preferential cell death of CA-positive neurons but suggests that the eventual conversion of CA-positive neurons into CA-negative neurons results from a loss of the enzyme activity. These results indicate that the phenotypic expression of cultured sensory neurons is dependent on defined environmental factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Object The goal of this study was to establish whether clear patterns of initial pain freedom could be identified when treating patients with classic trigeminal neuralgia (TN) by using Gamma Knife surgery (GKS). The authors compared hypesthesia and pain recurrence rates to see if statistically significant differences could be found. Methods Between July 1992 and November 2010, 737 patients presenting with TN underwent GKS and prospective evaluation at Timone University Hospital in Marseille, France. In this study the authors analyzed the cases of 497 of these patients, who participated in follow-up longer than 1 year, did not have megadolichobasilar artery- or multiple sclerosis-related TN, and underwent GKS only once; in other words, the focus was on cases of classic TN with a single radiosurgical treatment. Radiosurgery was performed with a Leksell Gamma Knife (model B, C, or Perfexion) using both MR and CT imaging targeting. A single 4-mm isocenter was positioned in the cisternal portion of the trigeminal nerve at a median distance of 7.8 mm (range 4.5-14 mm) anterior to the emergence of the nerve. A median maximum dose of 85 Gy (range 70-90 Gy) was delivered. Using empirical methods and assisted by a chart with clear cut-off periods of pain free distribution, the authors were able to divide patients who experienced freedom from pain into 3 separate groups: patients who became pain free within the first 48 hours post-GKS; those who became pain free between 48 hours and 30 days post-GKS; and those who became pain free more than 30 days after GKS. Results The median age in the 497 patients was 68.3 years (range 28.1-93.2 years). The median follow-up period was 43.75 months (range 12-174.41 months). Four hundred fifty-four patients (91.34%) were initially pain free within a median time of 10 days (range 1-459 days) after GKS. One hundred sixty-nine patients (37.2%) became pain free within the first 48 hours (Group PF(≤ 48 hours)), 194 patients (42.8%) between posttreatment Day 3 and Day 30 (Group PF((>48 hours, ≤ 30 days))), and 91 patients (20%) after 30 days post-GKS (Group PF(>30 days)). Differences in postoperative hypesthesia were found: in Group PF(≤ 48 hours) 18 patients (13.7%) developed postoperative hypesthesia, compared with 30 patients (19%) in Group PF((>48 hours, ≤ 30 days)) and 22 patients (30.6%) in Group PF(>30 days) (p = 0.014). One hundred fifty-seven patients (34.4%) who initially became free from pain experienced a recurrence of pain with a median delay of 24 months (range 0.62-150.06 months). There were no statistically significant differences between the patient groups with respect to pain recurrence: 66 patients (39%) in Group PF(≤ 48 hours) experienced pain recurrence, compared with 71 patients (36.6%) in Group PF((>48 hours, ≤ 30 days)) and 27 patients (29.7%) in Group PF(>30 days) (p = 0.515). Conclusions A substantial number of patients (169 cases, 37.2%) became pain free within the first 48 hours. The rate of hypesthesia was higher in patients who became pain free more than 30 days after GKS, with a statistically significant difference between patient groups (p = 0.014).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary sensory neurons were grown under four conditions of culture. The influence of nonneuronal cells, horse serum or both was studied on the phenotypic expression of certain neuronal subpopulations. The number of neurons expressing acetylcholinesterase, alpha-bungarotoxin-binding sites or a high uptake capacity for glutamine was enhanced by nonneuronal cells. The horse serum increases the neuronal subpopulation exhibiting a carbonic anhydrase activity. Certain phenotypic changes fit conditions consistent with an epigenetic induction rather than a cell selection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Trigeminal neuralgia (TN) secondary to megadolichobasilar artery (MBA) compression is considerably difficult to manage surgically. OBJECTIVE: This study aims to evaluate the safety/efficacy of Gamma Knife surgery (GKS) in this special group of patients. METHODS: Between July 1992 and November 2010, 29 patients with >1 year of follow-up presenting with MBA compression were treated with GKS at Timone University Hospital. Radiosurgery was performed using a Gamma Knife (model B, C or Perfexion). A single 4-mm isocenter was positioned in the cisternal portion of the trigeminal nerve at a median distance of 9.1 mm (range: 6-18.2 mm) from the emergence. RESULTS: The median follow-up period was 46.1 months (range: 12.9-157.9 months). Initially, all patients (100%) were pain free; the average time to complete pain relief was 13.5 days (range: 0-240 days). Their actuarial probability of remaining pain free without medication at 0.5, 1 and 2 years was 93.1, 79.3 and 75.7%, respectively, and remained stable until 13 years after treatment. The actuarial probability of hypoesthesia onset at 6 months was 4.3%; at 1 year it reached 13% and remained stable until 13 years after treatment. CONCLUSIONS: GKS proved to be reasonably safe and effective on a long-term basis as a first- and/or second-line surgical treatment for TN due to MBA compression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate a recently developed lymphadenopathy can be simple or complex. The medical history, presence or not of symptoms, the general physical examination, and the localization and characteristics of the adenopathy, most often lead to a diagnosis and therapy when indicated. Among young adults, the etiology is either infectious or reactive, rarely tumoral, as opposed to elderly persons. The most important step is to look at signs of severity (or non banality) such as an increased size, hard consistency, supra-clavicular location, an immunocompromised host, a history of Tb exposition. If present, these signs will trigger a biopsy with cyto- or histopathological examination mostly to rule out a malignant tumor. This article reviews the practical steps of an investigation of an isolated adenopathy in an adult patient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beside the several growth factors which play a crucial role in the development and regeneration of the nervous system, thyroid hormones also contribute to the normal development of the central and peripheral nervous system. In our previous work, we demonstrated that triiodothyronine (T3) in physiological concentration enhances neurite outgrowth of primary sensory neurons in cultures. Neurite outgrowth requires microtubules and microtubule associated proteins (MAPs). Therefore the effects of exogenous T3 or/and nerve growth factors (NGF) were tested on the expression of cytoskeletal proteins in primary sensory neurons. Dorsal root ganglia (DRG) from 19 day old rat embryos were cultured under four conditions: (1) control cultures in which explants were grown in the absence of T3 and NGF, (2) cultures grown in the presence of NGF alone, (3) in the presence of T3 alone or (4) in the presence of NGF and T3 together. Analysis of proteins by SDS-polyacrylamide gel electrophoresis revealed the presence of several proteins in the molecular weight region around 240 kDa. NGF and T3 together induced the expression of one protein, in particular, with a molecular weight above 240 kDa, which was identified by an antibody against MAP1c, a protein also known as cytoplasmic dynein. The immunocytochemical detection confirmed that this protein was expressed only in DRG explants grown in the presence of NGF and T3 together. Neither control explants nor explants treated with either NGF or T3 alone expressed dynein. In conclusion, a combination of nerve growth factor and thyroid hormone is necessary to regulate the expression of cytoplasmic dynein, a protein that is involved in retrograde axonal transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mouse Grueneberg ganglion (GG) is an olfactory subsystem located at the tip of the nose close to the entry of the naris. It comprises neurons that are both sensitive to cold temperature and play an important role in the detection of alarm pheromones (APs). This chemical modality may be essential for species survival. Interestingly, GG neurons display an atypical mammalian olfactory morphology with neurons bearing deeply invaginated cilia mostly covered by ensheathing glial cells. We had previously noticed their morphological resemblance with the chemosensory amphid neurons found in the anterior region of the head of Caenorhabditis elegans (C. elegans). We demonstrate here further molecular and functional similarities. Thus, we found an orthologous expression of molecular signaling elements that was furthermore restricted to similar specific subcellular localizations. Calcium imaging also revealed a ligand selectivity for the methylated thiazole odorants that amphid neurons are known to detect. Cellular responses from GG neurons evoked by chemical or temperature stimuli were also partially cGMP-dependent. In addition, we found that, although behaviors depending on temperature sensing in the mouse, such as huddling and thermotaxis did not implicate the GG, the thermosensitivity modulated the chemosensitivity at the level of single GG neurons. Thus, the striking similarities with the chemosensory amphid neurons of C. elegans conferred to the mouse GG neurons unique multimodal sensory properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurofilamentous changes in select groups of neurons are associated with the degenerative changes of many human age-related neurodegenerative diseases. To examine the possible effects of aging on the neuronal cytoskeleton containing human proteins, the retinas of transgenic mice expressing the gene for the human middle-sized neurofilament triplet were investigated at 3 or 12 months of age. Transgenic mice developed tangle-like neurofilamentous accumulations in a subset of retinal ganglion cells at 12 months of age. These neurofilamentous accumulations, which also involved endogenous neurofilament proteins, were present in the perikarya and proximal processes of large ganglion cells and were predominantly located in peripheral retina. The presence of the human protein may thus confer vulnerability of the cytoskeleton to age-related alterations in this specific retinal cell type and may serve as a model for similar cellular changes associated with Alzheimer's disease and glaucoma.