970 resultados para Trench coat
Resumo:
MOS gated power devices are now available for power switching applications with voltage blocking requirements up to 1 kV and current ratings up to 300A. This is due to the invention of the IGBT, a device in which MOS gate turn-on leads to minority carrier injection to modulate the high resistance drift region required for voltage blocking. The paper presents current technologies being developed in order to expand the applications of MOS gated power devices. Also explained is the available trench gate technology that can be used to fabricate power devices.
Resumo:
In this paper we report the development of 1.4 kV 25 A PT and NPT Trench IGBTs with ultra-low on-resistance, latch-up free operation and highly superior overall performance when compared to previously reported DMOS IGBTs in the same class. We have fabricated both PT and transparent anode NPT devices to cover a wide range of applications which require very low on-state losses or very fast time with ultra-low switching losses. The minimum forward voltage drop at the standard current density of 100A/cm2 was 1.1 V for PT non-irradiated devices and 2.1 V for 16 MRad PT irradiated devices. The non-irradiated transparent emitter NPT structure has a typical forward voltage drop of 2.2 V, a turn-off time below 100 ns and turn-off energy losses of 11.2 mW/cm2 at 125 C. The maximum controllable current density was in excess of 1000A/cm2.
Resumo:
The Trench Insulated Gate Bipolar Transistor (IGBT) is the most promising structure for the next generation of power semiconductor devices with wide applications ranging from motor control (1-4 kV) to HVDC (6.5 kV). Here we present for the first time an optimum design of a 1.4kV Trench IGBT using a new, fully integrated optimisation system comprising process and device simulators and the RSM optimiser. The use of this new TCAD system has contributed largely to realizing devices with characteristics far superior to the previous DMOS generation of IGBTs. Full experimental results on 1.4kV Trench IGBTs which are in excellent agreement with the TCAD predictions are reported.
Resumo:
A compact trench-gate IGBT model that captures MOS-side carrier injection is developed. The model retains the simplicity of a one-dimensional solution to the ambipolar diffusion equation, but at the same time captures MOS-side carrier injection and its effects on steady-state carrier distribution in the drift region and on switching waveforms. © 2007 IEEE.
Resumo:
Melanocortin-1 receptor (MC1R) plays a major role in pigmentation in many species. To investigate if the MC1R gene is associated with coat color in water buffalo, the coding region of MC1R gene of 216 buffalo samples was sequenced, which included 49 black river buffalo (Murrah and Nili-Ravi), 136 swamp buffalo (Dehong, Diandongnan, Dechang, Guizhou, and Xilin) with white and gray body, and 31 hybrid offspring of river buffalo Nili-Ravi (or Murrah) and swamp buffalo. Among the three variation sites found, SNP684 was synonymous, while SNP310 and SNP384 were nonsynonymous, leading to p.S104G and p.I128M changes, respectively. Only Individuals carrying homozygote E-BR/E-BR were black. The genotype and phenotype analysis of the hybrid offspring of black river buffalo and gray swamp buffalo further revealed that the river buffalo type allele E-BR or the allele carrying the amino acid p.104S was important for the full function of MC1R. The in silico functional analysis showed that the amino acid substitutions p.G104S and p.M128I had significant impact on the function of MC1R. Above results indicate that the allele E-BR or the allele carrying the amino acid p.104S was associated with the black coat color in buffalo.
Resumo:
Melanocortin 1 receptor (MC1R) gene plays a key role in determining coat color in several species, including the cattle. However, up to now there is no report regarding the MC1R gene and the potential association of its mutations with coat colors in yak (