959 resultados para Transitional Flow Regime
Resumo:
The present paper describes experimental investigation on the flow pattern and hydrodynamic effect of underwater gas jets from supersonic and sonic nozzles operated in correct- and imperfect expansion conditions. The flow visualizations show that jetting is the flow regime for the submerged gas injection at a high speed in the parameter range under consideration. The obtained results indicate that high-speed gas jets in still water induce large pressure pulsations upstream of the nozzle exit and the presence of shock-cell structure in the over- and under-expanded jets leads to an increase in the intensity of the jet-induced hydrodynamic pressure.
Resumo:
Rarefied gas flows through micro-channels are simulated using particle approaches, named as the information preservation (IP) method and the direct simulation Monte Carlo (DSMC) method. In simulating the low speed flows in long micro-channels the DSMC method encounters the problem of large sample size demand and the difficulty of regulating boundary conditions at the inlet and outlet. Some important computational issues in the calculation of long micro-channel flows by using the IP method, such as the use the conservative form of the mass conservation equation to guarantee the adjustment of the inlet and outlet boundary conditions and the super-relaxation scheme to accelerate the convergence process, are addressed. Stream-wise pressure distributions and mass fluxes through micro-channels given by the IP method agree well with experimental data measured in long micro-channels by Pong et al. (with a height to length ratio of 1.2:3000), Shih et al. (l.2:4800), Arkilic et al. and Arkilic (l.3:7500), respectively. The famous Knudsen minimum of normalized mass flux is observed in IP and DSMC calculations of a short micro-channel over the entire flow regime from continuum to free molecular, whereas the slip Navier-Stokes solution fails to predict it.
Resumo:
Numerical simulations were conducted to study thermocapillary flows in short half-zone liquid bridges of molten tin with Prandtl number Pr = 0.009, under ramped temperature difference. The spatio-temporal structures in the thermocapillary flows in short half-zone liquid bridges with aspect ratios As = 0.6, 0.8, and 1.0 were investigated. The first critical Marangoni numbers were compared with those predicted by linear stability analyses (LSA). The second critical Marangoni numbers for As = 0.6 and 0.8 were found to be larger than that for As = 1.0. The time evolutions of the thermocapillary flows exhibited unusual features such as a change in the azimuthal wave number during the three-dimensional stationary (non-oscillating) flow regime, a change in the oscillation mode during the three-dimensional oscillatory flow regime, and the decreasing and then increasing of amplitudes in a single oscillation mode. The effects of the ramping rate of the temperature difference on the flow modes and critical conditions were studied as well. In this paper, the experimental observability of the critical conditions was also discussed. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
On the basis of the two-continuum model of dilute gas-solid suspensions, the dynamic behavior of inertial particles in supersonic dusty-gas flows past a blunt body is studied for moderate Reynolds numbers, when the Knudsen effect in the interphase momentum exchange is significant. The limits of the inertial particle deposition regime in the space of governing parameters are found numerically under the assumption of the slip and free-molecule flow regimes around particles. As a model problem, the flow structure is obtained for a supersonic dusty-gas point-source flow colliding with a hypersonic flow of pure gas. The calculations performed using the full Lagrangian approach for the near-symmetry-axis region and the free-molecular flow regime around the particles reveal a multi-layer structure of the dispersed-phase density with a sharp accumulation of the particles in some thin regions between the bow and termination shock waves.
Resumo:
An information preservation (IP) method has been used to simulate many micro scale gas flows. It may efficiently reduce the statistical scatter inherent in conventional particle approaches such as the direct simulation Monte Carlo (DSMC) method. This paper reviews applications of IP to some benchmark problems. Comparison of the IP results with those given by experiment, DSMC, and the linearized Boltzmann equation, as well as the Navier-Stokes equations with a slip boundary condition, and the lattice Boltzmann equation, shows that the IP method is applicable to micro scale gas flows over the entire flow regime from continuum to free molecular.
Resumo:
An experimental method combined with boundary layer theory is given for evaluating the added mass of a sphere moving along the axis of a circular cylinder filled with water or oil. The real fluid effects are separated from ideal fluid effects.
The experimental method consists essentially of a magnetic steel sphere propelled from rest by an electromagnetic coil in which the current is accurately controlled so that it only supplies force for a short time interval which is within the laminar flow regime of the fluid. The motion of the sphere as a function of time is recorded on single frame photographs using a short-arc multiple flash lamp with accurately controlled time intervals between flashes.
A concept of the effect of boundary layer displacement on the fluid flow around a sphere is introduced to evaluate the real fluid effects on the added mass. Surprisingly accurate agreement between experiment and theory is achieved.
Resumo:
The Gussage, a Dorset winterhourne (intermittent chalk stream), has been used to convey water from a compensation borehole to the River Allen to supplement its flow to meet demand for water. Sections of the Gussage have been lined with chalk, butyl sheeting or polythene sheeting to prevent water loss through the porous bed. The effects of this major environmental modification associated with these abstraction practices in the winterbourne catchments have been studied in the Gussage system since 1973. To compensate for the lack of adequate pre-lining data, comparative studies have been made on 3 small unlined chalk streams of varying flow regimes, ie. the Crichel (a winterbourne), the North Winterbourne and the Tarrant (permanent discharge in the reaches studies). The distribution of macrophytes and invertebrates in winterbournes are compared with that in natural and artificial permanent streams. Statistical analysis showed samples from the winterbourne sites and the unmodified permanent stream sites are quite distinct, despite the fact that no samples were taken from winterbourne sites during the dry phase. This emphasizes the differences between the fauna of an intermittent and a permanent stream and suggests that alteration of the flow regime could be a significant factor. Where flow regime has been altered, as in the Gussage downstream of the borehole, the samples occupy an intermediate position. Within this group of modified sites there is no apparent gross difference between the invertebrates of lined or unlined reaches.
Resumo:
In 1996 a Strategy for the Management of Salmon in England and Wales was launched by the National Rivers Authority setting out objectives for the management of Salmon fisheries. These objectives are to be met through local Salmon Action Plans which are to be produced for each of the 68 principal salmon rivers in England and Wales by December 2003. A consultation document was produced for the river Wyre and released publicly during October 2003. This document: • Determined an egg deposition figure of 1.27 million eggs which would allow maximum gain from the fisheries • Raised a number of issues which are though to limit existing salmon production. • Identified actions which may be undertaken by the Environment Agency and other bodies to improved stocks. The document looks at the issues in the consultation document and also highlights some important changes to historic egg deposition rates following further analysis of the data. Some of the major issues addressed in the plan are: • Severe low flows on specific tributaries • Reduced juvenile production caused by insufficient habitat. • Changes in flow regime resulting in the wash out of gravels and redds. • The impact of man made structures preventing access to suitable spawning areas, and preventing the downstream distribution of spawning gravels.
Resumo:
Esta pesquisa investigou as motivações econômicas que explicam o nível de reconhecimento dos tributos diferidos sobre o lucro nas companhias abertas brasileiras no período inicial de adoção das IFRS no Brasil e da vigência obrigatória do Regime Tributário de Transição. Foram selecionadas companhias abertas não financeiras brasileiras componentes no índice IBrX 100, sendo identificadas 68 companhias nos anos de 2010 à 2013 compreendendo assim 272 observações. A análise descritiva dos dados evidenciou que o montante dos passivos fiscais diferidos foi superior ao montante dos ativos fiscais diferidos em todos os anos pesquisados, situação esta que contrata com o cenário pré-IFRS onde existiam menos passivos fiscais diferidos devido às reduzidas opções de exclusões temporárias, e que os ativos fiscais diferidos são majoritariamente oriundos de diferenças temporárias, porém ocorrendo um crescimento maior dos créditos fiscais referentes a prejuízos fiscais no período combinado com uma evolução maior dos ativos fiscais totais do que dos passivos fiscais diferidos. Por meio da análise multivariada de regressão múltipla com dados em painel foi possível constatar que: (i) não há relacionamento significativo entre o reconhecimento de tributos diferidos e o endividamento da empresa, isto é, não existe evidência que as companhias utilizem os tributos diferidos com a finalidade de influenciar o nível de endividamento, apesar da possibilidade de quebra de covenants e, consequentemente, aumento de seu risco de crédito, (ii) as maiores empresas tendem a registrar um valor menor de ativos fiscais diferidos líquidos de forma a reduzir seus lucros e divulgar sua sobretaxação a fim de reduzir sua exposição pública, e (iii) as empresas menos lucrativas são propensas a reconhecer um montante maior de ativos fiscais diferidos líquidos para, presumivelmente, atenuar o baixo resultado da empresa e com isso mascarar o seu fraco desempenho, e também, por outro lado, as companhias que possuem maior rentabilidade tendem a registrar valores menores de ativos fiscais diferidos líquidos no sentido de reduzir o lucro, e com isso, diminuir seus custos políticos. Assim, os resultados obtidos sugerem que as empresas utilizam a discricionariedade proporcionada pela regulação contábil dos tributos diferidos para atingir seus objetivos e demandas, no sentido de reduzir sua exposição pública e melhorar sua rentabilidade.
Resumo:
In this Letter, the rarefaction and roughness effects on the heat transfer process in gas microbearings are investigated. A heat transfer model is developed by introducing two-variable Weierstrass-Mandelbrot (W-M) function with fractal geometry. The heat transfer problem in the multiscale self-affine rough microbearings at slip flow regime is analyzed and discussed. The results show that rarefaction has more significant effect on heat transfer in rough microbearings with lower fractal dimension. The negative influence of roughness on heat transfer found to be the Nusselt number reduction. The heat transfer performance can be optimized with increasing fractal dimension of the rough surface. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Avalanches, debris flows, and landslides are geophysical hazards, which involve rapid mass movement of granular solids, water and air as a single-phase system. The dynamics of a granular flow involve at least three distinct scales: the micro-scale, meso-scale, and the macro-scale. This study aims to understand the ability of continuum models to capture the micro-mechanics of dry granular collapse. Material Point Method (MPM), a hybrid Lagrangian and Eulerian approach, with Mohr-Coulomb failure criterion is used to describe the continuum behaviour of granular column collapse, while the micromechanics is captured using Discrete Element Method (DEM) with tangential contact force model. The run-out profile predicted by the continuum simulations matches with DEM simulations for columns with small aspect ratios ('h/r' < 2), however MPM predicts larger run-out distances for columns with higher aspect ratios ('h/r' > 2). Energy evolution studies in DEM simulations reveal higher collisional dissipation in the initial free-fall regime for tall columns. The lack of a collisional energy dissipation mechanism in MPM simulations results in larger run-out distances. Micro-structural effects, such as shear band formations, were observed both in DEM and MPM simulations. A sliding flow regime is observed above the distinct passive zone at the core of the column. Velocity profiles obtained from both the scales are compared to understand the reason for a slow flow run-out mobilization in MPM simulations. © 2013 AIP Publishing LLC.
Resumo:
When solid material is removed in order to create flow channels in a load carrying structure, the strength of the structure decreases. On the other hand, a structure with channels is lighter and easier to transport as part of a vehicle. Here, we show that this trade off can be used for benefit, to design a vascular mechanical structure. When the total amount of solid is fixed and the sizes, shapes, and positions of the channels can vary, it is possible to morph the flow architecture such that it endows the mechanical structure with maximum strength. The result is a multifunctional structure that offers not only mechanical strength but also new capabilities necessary for volumetric functionalities such as self-healing and self-cooling. We illustrate the generation of such designs for strength and fluid flow for several classes of vasculatures: parallel channels, trees with one, two, and three bifurcation levels. The flow regime in every channel is laminar and fully developed. In each case, we found that it is possible to select not only the channel dimensions but also their positions such that the entire structure offers more strength and less flow resistance when the total volume (or weight) and the total channel volume are fixed. We show that the minimized peak stress is smaller when the channel volume (φ) is smaller and the vasculature is more complex, i.e., with more levels of bifurcation. Diminishing returns are reached in both directions, decreasing φ and increasing complexity. For example, when φ=0.02 the minimized peak stress of a design with one bifurcation level is only 0.2% greater than the peak stress in the optimized vascular design with two levels of bifurcation. © 2010 American Institute of Physics.
Resumo:
This paper describes work performed at IRSID/USINOR in France and the University of Greenwich, UK, to investigate flow structures and turbulence in a water-model container, simulating aspects typical of metal tundish operation. Extensive mean and fluctuating velocity measurements were performed at IRSID using LDA to determine the flow field and these form the basis for a numerical model validation. This apparently simple problem poses several difficulties for the CFD modelling. The flow is driven by the strong impinging jet at the inlet. Accurate description of the jet is most important and requires a localized fine grid, but also a turbulence model that predicts the correct spreading rates of jet and impinging wall boundary layers. The velocities in the bulk of the tundish tend to be (indeed need to be) much smaller than those of the jet, leading to damping of turbulence, or even laminar flow. The authors have developed several low-Reynolds number (low-Re) k–var epsilon model variants to compute this flow and compare against measurements. Best agreement is obtained when turbulence damping is introduced to account not only for walls, but also for low-Re regions in the bulk – the k–var epsilon model otherwise allows turbulence to accumulate in the container due to the restricted outlet. Several damping functions are tested and the results reported here. The k–ω model, which is more suited to transitional flow, also seems to perform well in this problem.
Resumo:
The chemical compositions of calcium phosphate materials are similar to that of bone making them very attractive for use in the repair of critical size bone defects. The bioresorption of calcium phosphate occurs principally by dissolution. To determine the impact of composition and flow conditions on dissolution rates, calcium phosphate tablets were prepared by slip casting of ceramic slips with different ratios of hydroxyapatite (HA) and ß-tricalcium phosphate (ß-TCP). Dissolution was evaluated at pH4 using both a static and dynamic flow regime. Both the composition of the HA:ß-TCP tablet and flow regime noticeably influenced the rate of dissolution; the 50:50 HA:ß-TCP composition demonstrating the greatest level of dissolution, and, exposure of the ceramic specimens to dynamic conditions producing the highest rate of dissolution. Understanding the impact of phase composition and flow condition with respect to the dissolution of calcium phosphate will aid in the development and improvement of materials for bone substitution.