963 resultados para Transfer Coefficient


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of fluid flow, surface roughness and immersion time on the electrochemical behaviour of carbon steel in coal seam gas produced water under static and hydrodynamic conditions has been studied. The disc electrode surface morphology before and after the corrosion test was characterized using scanning electron microscopy (SEM). The corrosion product was examined using X-ray photoelectron spectroscopy (XPS) and X-ray diffractometry (XRD).The results show that the anodic current density increased with increasing surface roughness and consequently a decrease in corrosion surface resistance. Under dynamic flow conditions, the corrosion rate increased with increasing rotating speed due to the high mass transfer coefficient and formation of non-protective akaganeite β- FeO(OH) and goethite α- FeO(OH) corrosion scale at the electrode surface.The corrosion rate was lowest at 0 rpm.The corrosion rate decreased in both static and dynamic conditions with increasing immersion time. The decrease in corrosion rate is attributed to the deposition of corrosion products on the electrode surface. SEM results revealed that the rougher surface exhibited a great tendency toward pitting corrosion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A two-dimensional axisymmetric problem of solidification of a superheated liquid in a long cylindrical mold has been studied in this paper by employing a new embedding technique. The mold and the melt has an imperfect contact and the heat transfer coefficient has been taken as a function of space and time. Short-time exact analytical solutions for the moving boundary and temperature distributions in the liquid, solid and mold have been obtained. The numerical results indicate that with the present solution, for some parameter values, substantial solidified thickness can be obtained. The method of solution is simple and straightforward, and consists of assuming fictitious initial temperatures for some suitable fictitious extensions of the actual regions. Sufficient conditions for the commencement of the solidification have been discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper deals with the design considerations of surface aeration tanks on two basic issues of oxygen transfer coefficient and power requirements for the surface aeration system. Earlier developed simulation equations for simulating the oxygen transfer coefficient with theoretical power per unit volume have been verified by conducting experiments in geometrically similar but differently shaped and sized square tanks, rectangular tanks of length to width ratio (L/W) of 1.5 and 2 as well as circular tanks. Based on the experimental investigations, new simulation criteria to simulate actual power per unit volume have been proposed. Based on such design considerations, it has been demonstrated that it is economical (in terms of energy saving) to use smaller tanks rather than using a bigger tank to aerate the same volume of water for any shape of tanks. Among the various shapes studied, it has been found that circular tanks are more energy efficient than any other shape.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An aeration process in ail activated sludge plant is a continuous-flow system. In this system, there is a steady input flow (flow from the primary clarifier or settling tank with some part from the secondary clarifier or secondary settling tank) and output flow connection to the secondary clarifier or settling tank. The experimental and numerical results obtained through batch systems can not be relied on and applied for the designing of a continuous aeration tank. In order to scale up laboratory results for field application, it is imperative to know the geometric parameters of a continuous system. Geometric parameters have a greater influence on the mass transfer process of surface aeration systems. The present work establishes the optimal geometric configuration of a continuous-flow surface aeration system. It is found that the maintenance of these optimal geometric parameters systems result in maximum aeration efficiency. By maintaining the obtained optimal geometric parameters, further experiments are conducted in continuous-flow surface aerators with three different sizes in order to develop design curves correlating the oxygen transfer coefficient and power number with the rotor speed. The design methodology to implement the presently developed optimal geometric parameters and correlation equations for field application is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aeration experiments were conducted in different sized baffled and unbaffled circular surface aeration tanks to study their relative performance on oxygen transfer process while aerating the same volume of water. Experiments were carried out with the objective of ascertaining the effect of baffle on oxygen transfer coefficient k. Simulation equations govern the oxygen transfer coefficient with the theoretical power per unit volume, X and actual power per unit volume, P-V. It has been found that, for any given X, circular tanks with baffle produce higher values of k than unbaffled circular tanks, but in terms of actual power consumption unbaffled tanks consume less power when compared to baffled circular tanks to achieve the same value of k. It has been found that in terms of energy consumption, epsilon, baffled tanks consume more energy than unbaffled tanks at any value of X. This suggests that the unbaffled circular tank gives a better performance as far as energy consumption is concerned and hence better economy. An example illustrating the energy conservation to aerate the same volume of water in both types of aerators is given. (c) 2007 Society of Chemical Industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dissolution, accompanied by chemical reaction, of monodisperse solid particles has been analysed. The resulting model, which accounts for the variation of mass transfer coefficient with the size of the dissolving particles, yields an approximate analytical form of a kinetic function. Rigorous numerical and approximate analytical solutions have been obtained for the governing system of nonlinear ordinary differential equations. The transient nature of the dissolution process as well as the accuracy of the analytical solution is brought out by the rigorous numerical solution. The analytical solution is fairly accurate for the major part of the range of operational times encountered in practice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The impedance of sealed nickel/cadmium cells around a cell e.m.f. of 0.0 V was measured at five different temperatures between � 10 and +30 °C. The results show that the behaviour is similar at all temperatures. Based on the experimental results, the relation between charge-transfer resistance (Rct) and temperature (T) has been established for the Volmer reaction. Further, the value of cathodic transfer coefficient (?) has been estimated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experiments were conducted on the oxygen transfer coefficient, k(L)a(20), through surface aeration in geometrically similar square tanks, with a rotor of diameter D fitted with six flat blades. An optimal geometric similarity of various linear dimensions, which produced maximum k(L)a(20) for any rotational speed of rotor N by an earlier study, was maintained. A simulation equation uniquely correlating k = k(L)a(20)(nu/g(2))(1/3) (nu and g are kinematic viscosity of water and gravitational constant, respectively), and a parameter governing the theoretical power per unit volume, X = (ND2)-D-3/(g(4/3)nu(1/3)), is developed. Such a simulation equation can be used to predict maximum k for any N in any size of such geometrically similar square tanks. An example illustrating the application of results is presented. Also, it has been established that neither the Reynolds criterion nor the Froude criterion is singularly valid to simulate either k or K = k(L)a(20)/N, simultaneously in all the sizes of tanks, even through they are geometrically similar. Occurrence of "scale effects" due to the Reynolds and the Froude laws of similitude on both k and K are also evaluated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Finite element analyses of a long hollow cylinder having an axisymmetric circumferential internal edge crack, subjected to convective cooling on the inner surface are performed. The transient thermal stress intensity factor is estimated using a domain version of the J-integral method. The effect of the thickness of the cylinder, crack length, and heat transfer coefficient on the stress intensity factor history are studied. The variations of critical normalized stress intensity factor with crack length-to-thickness ratio for different parameters are presented. The results show that if a small inner surface crack begins to grow, its stress intensity factor will increase with increase in crack length, reach a maximum, and then begin to drop. Based on the results, a fracture-based design methodology for cracked hollow pipes under transient thermal loads is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Submicron size Co, Ni and Co-Ni alloy powders have been synthesized by the polyol method using the corresponding metal malonates and Pd powder by reduction of PdOx in methanol. The kinetics of the hydrogen evolution reaction ( HER) in 6 M KOH electrolyte have been studied on electrodes made from the pressed powders. The d.c. polarization measurements have resulted in a value close to 120 mV decade(-1) for the Tafel slope, suggesting that the HER follows the Volmer-Heyrovsky mechanism. The values of exchange current density (i(o)) are in the range 1-10 mA cm(-2) for electrodes fabricated in the study. The a.c. impedance spectra measured at several potentials in the HER region showed a single semicircle in the Nyquist plots. Exchange current density (i(o)) and energy transfer coefficient (alpha) have been calculated by employing a nonlinear least square-fitting program.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Designing a heat sink based on a phase change material (PCM) under cyclic loading is a critical issue. For cyclic operation, it is required that the fraction of the PCM melting during the heating cycle should completely resolidify during the cooling period, so that that thermal storage unit can be operated for an unlimited number of cycles. Accordingly, studies are carried out to find the parameters influencing the behavior of a PCM under cyclic loading. A number of parameters are identified in the process, the most important ones being the duty cycle and heat transfer coefficient (h) for cooling. The required h or the required cooling period for complete resolidification for infinite cyclic operation of a conventional PCM-based heat sink is found to be very high and unrealistic with air cooling from the surface. To overcome this problem, the conventional design is modified where h and the area exposed to heat transfer can be independently controlled. With this arrangement, the enhanced area provided for cooling keeps h within realistic limits. Analytical investigation is carried out to evaluate the thermal performance of this modified PCM-based heat sink in comparison to those with conventional designs. Experiments are also performed on both the conventional and the modified PCM-based heat sinks to validate the new findings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reports an experimental investigation of oscillating temperature field beneath a single isolated nucleation site using a non-invasive TLC (thermochromic liquid crystal) based thermography technique. Empirical correlations are presented to demonstrate the influence of system pressure and wall heat flux on different ebullition characteristics in the nucleate pool boiling regime of refrigerant R-134a. TLC transient response and two-phase flow structure are captured using synchronized, high resolution imaging. It is observed that the area of influence of nucleation site exhibits a two-part distinct transient behavior during the bubble growth period and broadens to a maximum of 1.57 times the bubble diameter at the instant of bubble departure. This is accompanied by a sharp fall of 2.5 degrees C in the local excess temperature at the nucleation site, which results in momentary augmentation (similar to 40%) in the local heat transfer coefficient at the nucleation origin. The enhanced heat transfer rate observed during the bubble peel-off event is primarily due to transient micro-convection in the wake of the retreating bubble. Further, the results indicate that a slight increase in system pressure from 813.6 to 882.5 kPa has no considerable effect on either the wall superheat or the overall heat transfer coefficient and ebullition frequency. In addition, correlations have been obtained for bubble Reynolds number, Jackob number and the dimensionless bubble generation frequency in terms of modified boiling number.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The configuration of hemoglobin in solution and confined inside silica nanotubes has been studied using synchrotron small angle X-ray scattering and electrochemical activity. Confinement inside submicron tubes of silica aid in preventing protein aggregation, which is vividly observed for unconfined protein in solution. The radius of gyration (R-g) and size polydispersity (p) of confined hemoglobin was found to be lower than that in solution. This was also recently demonstrated in case of confined hemoglobin inside layered polymer capsules. The confined hemoglobin displayed a higher thermal stability with Rg and p showing negligible changes in the temperature range 25-75 degrees C. The differences in configuration between the confined and unconfined protein were reflected in their electrochemical activity. Reversible electrochemical response (from cyclic voltammograms) obtained in case of the confined hemoglobin, in contrary to the observance of only a cathodic response for the unconfined protein, gave direct indication of the differences between the residences of the electroactive heme center in a different orientation compared to that in solution state. The confined Hb showed loss of reversibility only at higher temperatures. The electron transfer coefficient (alpha) and electron transfer rate constant (k(s)) were also different, providing additional evidence regarding structural differences between the unconfined and confined states of hemoglobin. Thus, absence of any adverse effects due to confinement of proteins inside the inorganic matrices such as silica nanotubes opens up new prospects for utilizing inorganic matrices as protein ``encapsulators'', as well as sensors at varying temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The performance of a two-phase heat transport device such as the loop heat pipe is influenced by the evaporative heat transfer coefficient in the evaporator. From previous experiments with loop heat pipes, it has been observed that fluids with a high heat pipe figure of merit have a high heat transfer coefficient. Considering an evaporating extended thin film, this paper theoretically corroborates this experimental observation by deriving a direct link between the evaporative heat flux at the interface and the fluid figures of merit (namely interline heat flow parameter and heat pipe figure of merit) in the thin film. Numerical experiments with different working fluids clearly show that a fluid with high figure of merit also has a high cumulative heat transfer in the microregion encompassing the evaporating thin film. Thus, a loop heat pipe or heat pipe that uses a working fluid with a high interline heat flow parameter and heat pipe figure of merit will lead to a high evaporative heat transfer coefficient.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present work reports the study of the bubble formation dynamics in the compensation chamber (CC) of the evaporator in Loop Heat Pipes. A series of experiments were conducted at different heat loads and bubbles in the CC were visualized. Bubbles diameter, frequency and velocity were measured and correlated against heat loads. Temperatures were measured at various locations and heat transfer coefficient was calculated. Performance of the LHP evaporator was evaluated at different heat loads. (C) 2013 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license