969 resultados para Total density of state
Resumo:
Landscape scale environmental gradients present variable spatial patterns and ecological processes caused by climate, topography and soil characteristics and, as such, offer candidate sites to study environmental change. Data are presented on the spatial pattern of dominant species, biomass, and carbon pools and the temporal pattern of fluxes across a transitional zone shifting from Great Basin Desert scrub, up through pinyon-juniper woodlands and into ponderosa pine forest and the ecotones between each vegetation type. The mean annual temperature (MAT) difference across the gradient is approximately 3 degrees C from bottom to top (MAT 8.5-5.5) and annual precipitation averages from 320 to 530 mm/yr, respectively. The stems of the dominant woody vegetation approach a random spatial pattern across the entire gradient, while the canopy cover shows a clustered pattern. The size of the clusters increases with elevation according to available soil moisture which in turn affects available nutrient resources. The total density of woody species declines with increasing soil moisture along the gl-adient, but total biomass increases. Belowground carbon and nutrient pools change from a heterogenous to a homogenous distribution on either side of the woodlands. Although temperature controls the: seasonal patterns of carbon efflux from the soils, soil moisture appears to be the primary driving variable, but response differs underneath the different dominant species, Similarly, decomposition of dominant litter occurs faster-at the cooler and more moist sites, but differs within sites due to litter quality of the different species. The spatial pattern of these communities provides information on the direction of future changes, The ecological processes that we documented are not statistically different in the ecotones as compared to the: adjoining communities, but are different at sites above the woodland than those below the woodland. We speculate that an increase in MAT will have a major impact on C pools and C sequestering and release processes in these semiarid landscapes. However, the impact will be primarily related to moisture availability rather than direct effects of an increase in temperature. (C) 1998 Elsevier Science B.V.
Impact of the Charge Density of Phospholipid Bilayers on Lubrication of Articular Cartilage Surfaces
Resumo:
In this work, ab initio density functional theory (DFT) calculations are performed to study the structural and electronic properties of diazonium reagent functionalized (4, 4) single-walled carbon nanotube (SWCNT). We find the aryl group covalently bonds with SWCNT and prefers to be perpendicular to the side wall of nanotube. It has a rotational barrier of 0.35 eV around the formed aryl-tube bond axis and should be thermodynamically stable at room temperature. Additionally, new peaks appeared around the Fermi energy in the density of state (DOS) due to the weak band dispersion. Increasing of the coverage of the functional group will result in significant upshift of the Fermi level.
Resumo:
In this letter the core-core-valence Auger transitions of an atomic impurity, both in bulk or adsorbed on a jellium-like surface, are computed within a DFT framework. The Auger rates calculated by the Fermi golden rule are compared with those determined by an approximate and simpler expression. This is based on the local density of states (LDOS) with a core hole present, in a region around the impurity nucleus. Different atoms, Na and Mg, solids, Al and Ag, and several impurity locations are considered. We obtain an excellent agreement between KL1V and KL23V rates worked out with the two approaches. The radius of the sphere in which we calculate the LDOS is the relevant parameter of the simpler approach. Its value only depends on the atomic species regardless of the location of the impurity and the type of substrate. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Using ZnO seed layers, an efficient approach for enhancing the heterointerface quality of electrodeposited ZnO–Cu2O solar cells is devised. We introduce a sputtered ZnO seed layer followed by the sequential electrodeposition of ZnO and Cu2O films. The seed layer is employed to control the growth and crystallinity and to augment the surface area of the electrodeposited ZnO films, thereby tuning the quality of the ZnO–Cu2O heterointerface. Additionally, the seed layer also assists in forming high quality ZnO films, with no pin-holes, in a high pH electrolyte solution. X-ray electron diffraction patterns, scanning electron and atomic force microscopy images, as well as photovoltaic measurements, clearly demonstrate that the incorporation of certain seed layers results in the alteration of the heterointerface quality, a change in the heterojunction area and the crystallinity of the films near the junction, which influence the current density of photovoltaic devices.
Resumo:
A simple and effective method of controlling the growth of vertically aligned carbon nanotube arrays in a lowerature plasma is presented. Ni catalyst was pretreated by plasma immersion ion implantation prior to the nanotube growth by plasma-enhanced chemical vapor deposition. Both the size distribution and the areal density of the catalyst nanoparticles decrease due to the ion-surface interactions. Consequently, the resulting size distribution of the vertically aligned carbon nanotubes is reduced to 50 ∼ 100 nm and the areal density is lowered (by a factor of ten) to 10 8 cm -2, which is significantly different from the very-high-density carbon nanotube forests commonly produced by thermal chemical vapor deposition. The efficiency of this pretreatment is compared with the existing techniques such as neutral gas annealing and plasma etching. These results are highly relevant to the development of the next-generation nanoelectronic and optoelectronic devices that require effective control of the density of nanotube arrays.
Resumo:
The possibility to control the morphology and nucleation density of quasi-one-dimensional, single-crystalline α -Fe2 O3 nanostructures by varying the electric potential of iron surfaces exposed to reactive oxygen plasmas is demonstrated experimentally. A systematic increase in the oxygen ion flux through rf biasing of otherwise floating substrates and then an additional increase of the ion/neutral density resulted in remarkable structural transformations of straight nanoneedles into nanowires with controlled tapering/aspect ratio and also in larger nucleation densities. Multiscale numerical simulations relate the microscopic ion flux topographies to the nanostructure nucleation and morphological evolution. This approach is applicable to other metal-oxide nanostructures.
Resumo:
Traffic incidents are key contributors to non-recurrent congestion, potentially generating significant delay. Factors that influence the duration of incidents are important to understand so that effective mitigation strategies can be implemented. To identify and quantify the effects of influential factors, a methodology for studying total incident duration based on historical data from an ‘integrated database’ is proposed. Incident duration models are developed using a selected freeway segment in the Southeast Queensland, Australia network. The models include incident detection and recovery time as components of incident duration. A hazard-based duration modelling approach is applied to model incident duration as a function of a variety of factors that influence traffic incident duration. Parametric accelerated failure time survival models are developed to capture heterogeneity as a function of explanatory variables, with both fixed and random parameters specifications. The analysis reveals that factors affecting incident duration include incident characteristics (severity, type, injury, medical requirements, etc.), infrastructure characteristics (roadway shoulder availability), time of day, and traffic characteristics. The results indicate that event type durations are uniquely different, thus requiring different responses to effectively clear them. Furthermore, the results highlight the presence of unobserved incident duration heterogeneity as captured by the random parameter models, suggesting that additional factors need to be considered in future modelling efforts.
Resumo:
We report a more accurate method to determine the density of trap states in a polymer field-effect transistor. In the approach, we describe in this letter, we take into consideration the sub-threshold behavior in the calculation of the density of trap states. This is very important since the sub-threshold regime of operation extends to fairly large gate voltages in these disordered semiconductor based transistors. We employ the sub-threshold drift-limited mobility model (for sub-threshold response) and the conventional linear mobility model for above threshold response. The combined use of these two models allows us to extract the density of states from charge transport data much more accurately. We demonstrate our approach by analyzing data from diketopyrrolopyrrole based co-polymer transistors with high mobility. This approach will also work well for other disordered semiconductors in which sub-threshold conduction is important.
Resumo:
Since the 1980s the concept of risk has produced a large and diverse volume of sociological research. Ulrich Beck’s groundbreaking risk society thesis provides a particularly engaging contribution, since it seems that nearly every sociological account of risk engages with this work. For Beck, we are living in second modernity – a new epoch that breaks with pre-modernity and industrial society due to the centrality, incalculability and reflexivity of globalised risk. While Beck’s theory is compelling, a reading of other theorists such as Foucault (2007[1978]) and Hacking (1975,1990) suggests that a difficulty with Beck’s work is that in attempting to explain what is novel about risk in contemporary times, he too quickly passes over the complexities and ruptures of historical change that impact on the history and contingency of risk. This paper begins by presenting a brief analysis of the present state of risk by introducing Beck’s historical narrative of risk from pre-modernity to the risk society; it then outlines the challenges with the “risk as epoch” argument by considering a range of literature, which suggests risk has a more complex history than proposed by Beck; and finally it highlights the value in examining strategies of statecraft in early modern Europe, specifically Machiavelli’s The Prince (2008[1513]) and Giovanni Botero’s political treatise, Della Ragion di Stato (1956[1589]) – as a means of more thoroughly understanding how our current concept of risk emerges. In doing so, this paper seeks to open up new trajectories in the historicisation of risk for other interested scholars.
Resumo:
The first total synthesis of (-)-4-thiocyanatoneopupukeanane starting from (R)-carvone has been achieved, establishing the relative as well as absolute structure of the natural product.
Resumo:
The first stereoselective total synthesis of (+/-)-allo-cedrol 20, an enantiomer of khusiol and a complex sesquiterpene having a novel tricyclo[5.2.2.0(1,5)]undecane framework, is reported from 8-methoxytricyclo[6.2.2.0(1,6)]dodec-6-en-9-one 6c. The methodology involves preparation of 9-methoxytricyclo[7.2.1.0(1,6)]dodec-6-en-8-one 12 from 6c and its conversion through the compounds 8-benzyloxy-7,7-dimethyl-9-methoxytricyclo[7.2.1.0(1,6)]dodec-5-ene 38, 7-benzyloxy-8-methoxy-2,6,6-trimethyltricyclo[6.2.1.0(1,5)]undecane 48 into 8-methoxy-2,6,6-trimethyltricyclo[6.2.1.0(1,5)]undecan-7-one 49. Wittig reaction of 49 affords the olefin 50 which has been smoothly rearranged into khusione 51. Metal-ammonia reduction of khusione under specific conditions affords (+/-)-allo-cedrol. Thus, bridgehead substitution of a methoxy group by a methyl group is the key reaction in this synthesis. In an alternative strategy, attempted conversion of 8-methoxy-2-methyltricyclo[6.2.1.0(1,5)]undec-5-en-7-one 16 into khusione 37 results in an inseparable mixture of the isomers. A notable observation in this synthesis is the unusual formation of a gamma-alkylated product 27 during Woodward methylation of 16.