932 resultados para Titanate, Nanofibre, Ion Exchange, Removal of Radioactive Ions, Adsorbent
Resumo:
The development and improvement of MC-ICP-MS instruments have fueled the growth of Lu–Hf geochronology over the last two decades, but some limitations remain. Here, we present improvements in chemical separation and mass spectrometry that allow accurate and precise measurements of 176Hf/177Hf and 176Lu/177Hf in high-Lu/Hf samples (e.g., garnet and apatite), as well as for samples containing sub-nanogram quantities of Hf. When such samples are spiked, correcting for the isobaric interference of 176Lu on 176Hf is not always possible if the separation of Lu and Hf is insufficient. To improve the purification of Hf, the high field strength elements (HFSE, including Hf) are first separated from the rare earth elements (REE, including Lu) on a first-stage cation column modified after Patchett and Tatsumoto (Contrib. Mineral. Petrol., 1980, 75, 263–267). Hafnium is further purified on an Ln-Spec column adapted from the procedures of Münker et al. (Geochem., Geophys., Geosyst., 2001, DOI: 10.1029/2001gc000183) and Wimpenny et al. (Anal. Chem., 2013, 85, 11258–11264) typically resulting in Lu/Hf < 0.0001, Zr/Hf < 1, and Ti/Hf < 0.1. In addition, Sm–Nd and Rb–Sr separations can easily be added to the described two-stage ion-exchange procedure for Lu–Hf. The isotopic compositions are measured on a Thermo Scientific Neptune Plus MC-ICP-MS equipped with three 1012 Ω resistors. Multiple 176Hf/177Hf measurements of international reference rocks yield a precision of 5–20 ppm for solutions containing 40 ppb of Hf, and 50–180 ppm for 1 ppb solutions (=0.5 ng sample Hf 0.5 in ml). The routine analysis of sub-ng amounts of Hf will facilitate Lu–Hf dating of low-concentration samples.
Resumo:
Parylenes are poly(p-xylylene) polymers that are widely used as moisture barriers and in biomedicine because of their good biocompatibility. We have investigated MeV ion beam lithography using 16O+ ions for writing defined patterns in Parylene-C, which is evaluated as a coating material for the Cochlear Implant (CI) electrode array, a neuroprosthesis to treat some forms of deafness. Parylene-C and -F on silicon and glass substrates as well as 50 μm thick PTFE were irradiated to different fluences (1×1013-1×10161×1013-1×1016 1 MeV 16O+ ions cm−2) through aperture masks under high vacuum and a low pressure (<10−3 mbar) oxygen atmosphere. Biocompatibility of the irradiated and unirradiated surfaces was tested by cell-counting to determine the proliferation of murine spiral ganglion cells. The results reveal that an oxygen ion beam can be used to pattern Parylene-C and -F without using a liquid solvent developer in a similar manner to PTFE but with a ∼25× smaller removal rate. Biocompatibility tests showed no difference in cell adhesion between irradiated and unirradiated areas or ion fluence dependence. Coating the Parylene surface with an adhesion-promoting protein mixture had a much greater effect on cell proliferation.
Resumo:
A systematic review was performed in order to evaluate perchlorate remediation technologies. The two included technologies were ion-exchange concerted with biodegradation and solely biodegradation. A meta-analysis was completed and subsequently, a regression model was formed to conduct a degradation rate analysis and to depict the association between rate and various dependent variables (salinity/sali, nitrate concentration/nitc and carbon source concentration/csou). The outcome of the model analysis suggested that salt concentration did have an effect on the degradation rate in the ion-exchange process and that with a salt concentration greater than or equal to 18.6 g/L, the biodegradation process will produce a greater reduction of perchlorate than ion-exchange concerted with biodegradation. However, when a t-test examined the difference in perchlorate degradation rate between the two cleanup methods, there was no significant difference seen (p=0.7351, α = 0.05).^
Resumo:
Among the many advantages of the recently proposed ion beam shepherd (IBS) debris removal technique is the capability to deal with multiple targets in a single mission. A preliminary analysis is here conducted in order to estimate the cost in terms of spacecraft mass and total mission time to remove multiple large-size upper stages of the Zenit family. Zenit-2 upper stages are clustered at 71 degrees inclination around 850 km altitude in low Earth orbit. It is found that a removal of two targets per year is feasible with a modest size spacecraft. The most favorable combinations of targets are outlined.
Resumo:
"August 1990."
Resumo:
Mode of access: Internet.
Resumo:
"Date Declassified: September 23, 1955."
Resumo:
"Date Declassified: September 23, 1955."
Resumo:
"Date Declassified: September 23, 1955."
Resumo:
"Contract AT(49-1)-535."
Resumo:
The investigation of the electrolytic precipitation of uranium from a sample of acid leach liquor in an ion exchange membrane cell has been conducted on leach liquor from the Vitro Co. This leach liquor can be treated by the above means to precipitate essentially all the uranium and simultaneously to produce additional acid which may be used for further leaching.
Resumo:
Electrolytic precipitation of uranium from ion-exchange resin eluates has been investigated in a three-compartment cell. A relatively low-energy consumption is required and anodic attack is reduced to a negligible quantity. During the precipitation, acid is produced in sufficient quantity for use as eluant for subsequent eluting operations. The recovered uranium is in the form of a rapid settling, fast filtering precipitate which is easily washed with water to reduce the chloride content to a tolerable concentration.
Resumo:
"Date Declassified: September 23, 1955."
Resumo:
"Date Declassified: September 23, 1955."
Resumo:
"Contract No. AT(49-1)-621."