905 resultados para Tin octoate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium nitride (TiN), which is widely used for hard coatings, reportedly undergoes a pressure-induced structural phase transformation, from a NaCl to a CsCl structure, at similar to 7 GPa. In this paper, we use first-principles calculations based on density functional theory with a generalized gradient approximation of the exchange correlation energy to determine the structural stability of this transformation. Our results show that the stress required for this structural transformation is substantially lower (by more than an order of magnitude) when it is deviatoric in nature vis-a-vis that under hydrostatic pressure. Local stability of the structure is assessed with phonon dispersion determined at different pressures, and we find that CsCl structure of TiN is expected to distort after the transformation. From the electronic structure calculations, we estimate the electrical conductivity of TiN in the CsCl structure to be about 5 times of that in NaCl structure, which should be observable experimentally. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4798591]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the third order optical nonlinearity of 15-atom gold clusters is significantly enhanced when in contact with indium tin oxide (ITO) conducting film. Open and close aperture z-scan experiments together with non-degenerate pump-probe differential transmission experiments were done using 80 fs laser pulses centered at 395 nm and 790 nm on gold clusters encased inside cyclodextrin cavities. We show that two photon absorption coefficient is enhanced by an order of magnitude as compared to that when the clusters are on pristine glass plate. The enhancement for the nonlinear optical refraction coefficient is similar to 3 times. The photo-induced excited state absorption using pump-probe experiments at pump wavelength of 395 nm and probe at 790 nm also show an enhancement by an order of magnitude. These results attributed to the excited state energy transfer in the coupled gold cluster-ITO system are different from the enhancement seen so far in charge donor-acceptor complexes and nanoparticle-conjugate polymer composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO films have been grown via a vapour phase transport (VPT) on soda lime glass (SLG) and indium-tin oxide (ITO) coated glass. ZnO film on ITO had traces of Zn and C which gives them a dark appearance while that appears yellowish-white on SLG. X-ray photoelectron spectroscopy studies confirm the traces of C in the form of C-O. The photoluminescence studies reveal a prominent green luminescence band for ZnO film on ITO. (C) 2013 Author(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present investigation, the corrosive behaviour of Al 6061-TiN particulate composites prepared by liquid metallurgy has been studied in chloride medium using electroanalytical techniques such as Tafel, cyclic polarization and electrochemical impedance spectroscopy (EIS). Surface morphology of the sample electrodes was examined using scanning electron micrography and energy dispersive X-ray methods. X-ray diffraction technique was used to confirm inclusion of TiN particulates in the matrix alloy and identify the alloying elements and intermetallic compounds in the Al 6061 composites. Polarization studies indicate an increase in the corrosion resistance in composites compared to the matrix alloy. EIS study reveals that the polarization resistance (R (p)) increases with increase in TiN content in composites, thus confirming improved corrosion resistance in composites. The observed decrease in corrosion rate in the case of composites is due to decoupling between TiN particles and Al 6061 alloy. It is understood that after the initiation of corrosion, interfacial corrosion products may have decoupled the conducting ceramic TiN from Al 6061 matrix alloy thus eliminating the galvanic effect between them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene nanosheet (GNS) was synthesized by using microwave plasma enhanced CVD on copper substrate and followed by evaporation of tin metal. Scanning and transmission electron microscopy show that nanosize Sn particles are well embedded into the GNS matrix. The composition, structure, and electrochemical properties were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), cyclic voltammetry (CV) and chrono-potentiometry. The first discharge capacity of as-deposited and annealed SnGNS obtained was 1551 mA h/g and 975 mA h/g, respectively. The anodes show excellent cyclic performance and coulombic efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We incorporated tin oxide nanostructures into the graphene nanosheet matrix and observed that the phase of tin oxide varies with the morphology. The highest discharge capacity and coulumbic efficiency were obtained for SnO phase of nanoplates morphology. Platelet morphology of tin oxide shows more reversible capacity than the nanoparticle (SnO2 phase) tin oxide. The first discharge capacity obtained for SnO@GNS is 1393 and 950 mAh/g for SnO2@GNS electrode at a current density of 23 mu A/cm(2). A stable capacity of about 1022 and 715 mAh/g was achieved at a current rate of 23 mu A/cm(2) after 40 cycles for SnO@GNS and SnO2@GNS anodes, respectively. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is a formidable challenge to arrange tin nanoparticles in a porous matrix for the achievement of high specific capacity and current rate capability anode for lithium-ion batteries. This article discusses a simple and novel synthesis of arranging tin nanoparticles with carbon in a porous configuration for application as anode in lithium-ion batteries. Direct carbonization of synthesized three-dimensional Sn-based MOF: K2Sn2(1,4-bdc)(3)](H2O) (1) (bdc = benzenedicarboxylate) resulted in stabilization of tin nanoparticles in a porous carbon matrix (abbreviated as Sn@C). Sn@C exhibited remarkably high electrochemical lithium stability (tested over 100 charge and discharge cycles) and high specific capacities over a wide range of operating currents (0.2-5 Ag-1). The novel synthesis strategy to obtain Sn@C from a single precursor as discussed herein provides an optimal combination of particle size and dispersion for buffering severe volume changes due to Li-Sn alloying reaction and provides fast pathways for lithium and electron transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A correlation between gas sensing properties and defect induced Room Temperature Ferromagnetism (RTFM) is demonstrated in non-stoichiometric SnO2 prepared by solution combustion method. The presence of oxygen vacancies (V-O), confirmed by RTFM is identified as the primary factor for enhanced gas sensing effect. The as-prepared SnO2 shows high saturation magnetization of similar to 0.018 emu/g as compared to similar to 0.002 and similar to 0.0005 emu/g in annealed samples and SnO2 prepared by precipitation respectively. The SnO2 prepared by precipitation which is an equilibrium method of synthesis shows lesser defects compared to the combustion product and hence exhibits lesser sensitivity in spite of smaller crystallite size. The study utilizes RTFM as a potential tool to characterize metal oxide gas sensors and recognizes the significance of oxygen vacancies in sensing mechanism over the microstructure. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Undoped and Sn-doped WO3 thin films were grown on cleaned glass substrates by chemical spray pyrolysis, using ammonium tungstate (NH4)(2)WO4 as the host precursor and tin chloride (SnCl4 center dot 5H(2)O) as the source of dopant. The XRD spectra confirm the monoclinic structure with a sharp narrow peak along (200) direction along with other peaks of low relative intensities for all the samples. On Sn doping, the films exhibit reduced crystallinity relative to the undoped film. The standard deviation for relative peak intensity with dopant concentration shows enhancement in heterogeneous nucleation growth. As evident from SEM images, on Sn doping, appearance of island-like structure (i.e., cluster of primary crystallites at few places) takes place. The transmittance has been found to decrease in all the Sn-doped films. The optical band gap has been calculated for both direct and indirect transitions. On Sn doping, the direct band gap shows a red shift and becomes 2.89 eV at 2 at.% doping. Two distinct peaks, one blue emission at 408 nm and other green emission at 533 nm, have been found in the PL spectra. Electrical conductivity has been found to increase with Sn doping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tin oxide nanoparticles are synthesized using solution combustion technique and tin oxide - carbon composite thick films are fabricated with amorphous carbon as well as carbon nanotubes (CNTs). The x-ray diffraction, Raman spectroscopy and porosity measurements show that the as-synthesized nanoparticles are having rutile phase with average crystallite size similar to 7 nm and similar to 95 m(2)/g surface area. The difference between morphologies of the carbon doped and CNT doped SnO2 thick films, are characterized using scanning electron microscopy and transmission electron microscopy. The adsorption-desorption kinetics and transient response curves are analyzed using Langmuir isotherm curve fittings and modeled using power law of semiconductor gas sensors. (C) 2015 Author(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tin (II) sulphide (SnS), a direct band gap semiconductor compound, has recently received great attention due to its unique properties. Because of low cost, absence of toxicity, and good abundance in nature, it is becoming a candidate for future multifunctional devices particularly for light conversion applications. Although the current efficiencies are low, the cost-per-Watt is becoming competitive. At room temperature, SnS exhibits stable low-symmetric, double-layered orthorhombic crystal structure, having a = 0.4329, b = 1.1192, and c = 0.3984nm as lattice parameters. These layer-structured materials are of interest in various device applications due to the arrangement of structural lattice with cations and anions. The layers of cations are separated only by van der Waals forces that provide intrinsically chemically inert surface without dangling bonds and surface density of states. As a result, there is no Fermi level pinning at the surface of the semiconductor. This fact leads to considerably high chemical and environmental stability. Further, the electrical and optical properties of SnS can be easily tailored by modifying the growth conditions or doping with suitable dopants without disturbing its crystal structure.In the last few decades, SnS has been synthesized and studied in the form of single-crystals and thin-films. Most of the SnS single-crystals have been synthesized by Bridgeman technique, whereas thin films have been developed using different physical as well as chemical deposition techniques. The synthesis or development of SnS structures in different forms including single-crystals and thin films, and their unique properties are reviewed here. The observed physical and chemical properties of SnS emphasize that this material could has novel applications in optoelectronics including solar cell devices, sensors, batteries, and also in biomedical sciences. These aspects are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tin oxide (SnO2) nanowires are synthesized by Au catalyzed chemical vapor deposition of Sn and C mixture at 900 degrees C by employing a continuous flow of Ar: O-2 (10:1) for an hour. X-ray diffraction and Raman spectroscopy studies indicate that the as-grown SnO2 nanowires are crystalline in nature with tetragonal rutile phase. Electron microscopy studies reveal towards high aspect ratio of nanowires. The field emission studies show that SnO2 nanowires grown on Si substrate exhibit low turn-on field of 1.75 V/mu m (at 0.1 mu A/cm(2)) and long-term emission stability over a period of more than 50 h with a current density of 4 mu A/cm(2) at a constant electric field of 2.25 V/mu m. Hardly any considerable degradation in the emission current is noticed even after 50 h which may be attributed to the high crystallinity of SnO2 nanowires. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earth abundant tin sulfide (SnS) has attracted considerable attention as a possible absorber material for low-cost solar cells due to its favourable optoelectronic properties. Single crystals of SnS were grown by physical vapour deposition (PVD) technique. Microindentation studies were carried out on the cleaved surfaces of the crystals to understand their mechanical behaviour. Microhardness increased initially with the load, giving sharp maximum at 15 g. Quenching effect has increased the microhardness, while annealing reduced the microhardness of grown crystals. The hardness values of as-grown, annealed and quenched samples at 15 g load are computed to be 99.69, 44.52 and 106.29 kg/mm(2) respectively. The microhardness of PVD grown crystals are high compared to CdTe, a leading low-cost PV material. The as-grown faces are found to be fracture resistant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proposed work discusses different parameters which are considered to improve the performance of a tin oxide-based thin film gas sensor. This includes analysing and deducing suitable catalytic additives to enhance the performance of the sensor in terms of selectivity and sensitivity. Chemical sensitization and electronic sensitization are performed to improve the rate of response of the sensor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface tension of molten tin has been determined by the sessile drop method at The surface tension of molten tin has been determined by the sessile drop method at temperatures ranging from 523 to 1033 K and in the oxygen partial pressure (P-O2) range from 2.85 x 10(-19) to 8.56 x 10(-6) MPa, and its dependence on temperature and oxygen partial pressure has been analyzed. At P-O2 = 2.85 x 10(-19) and 1.06 x 10(-15) MPa, the surface tension decreases linearly with the increase of temperature and its temperature coefficients are -0.151 and -0.094 mNm(-1) K-1, respectively. However, at high P-O2 (3.17 x 10(-10), 8.56 x 10(-6) MPa), the surface tension increases with the temperature near the melting point (505 K) and decreases above 723 K. The surface tension decrease with increasing P-O2 is much larger near the melting point than at temperatures above 823 K. The contact angle between the molten tin and the alumina substrate is 158-173degrees, and the wettability is poor.