79 resultados para Timoshenko
Resumo:
El hormigón estructural sigue siendo sin duda uno de los materiales más utilizados en construcción debido a su resistencia, rigidez y flexibilidad para diseñar estructuras. El cálculo de estructuras de hormigón, utilizando vigas y vigas-columna, es complejo debido a los fenómenos de acoplamiento entre esfuerzos y al comportamiento no lineal del material. Los modelos más empleados para su análisis son el de Bernoulli-Euler y el de Timoshenko, indicándose en la literatura la conveniencia de usar el segundo cuando la relación canto/luz no es pequeña o los elementos están fuertemente armados. El objetivo fundamental de esta tesis es el análisis de elementos viga y viga-columna en régimen no lineal con deformación por cortante, aplicando el concepto de Pieza Lineal Equivalente (PLE). Concepto éste que consiste básicamente en resolver el problema de una pieza en régimen no lineal, transformándolo en uno lineal equivalente, de modo que ambas piezas tengan la misma deformada y los mismos esfuerzos. Para ello, se hizo en primer lugar un estudio comparado de: las distintas propuestas que aplican la deformación por cortante, de los distintos modelos constitutivos y seccionales del hormigón estructural y de los métodos de cálculo no lineal aplicando el método de elementos finitos (MEF). Teniendo en cuenta que la resolución del problema no lineal se basa en la resolución de sucesivos problemas lineales empleando un proceso de homotopía, los problemas lineales de la viga y viga-columna de Timoshenko, se resuelven mediante MEF, utilizando soluciones nodalmente exactas (SNE) y acción repartida equivalente de cualquier orden. Se obtiene así, con muy pocos elementos finitos, una excelente aproximación de la solución, no sólo en los nodos sino en el interior de los elementos. Se introduce el concepto PLE para el análisis de una barra, de material no lineal, sometida a acciones axiales, y se extiende el mismo para el análisis no lineal de vigas y vigas-columna con deformación por cortante. Cabe señalar que para estos últimos, la solución de una pieza en régimen no lineal es igual a la de una en régimen lineal, cuyas rigideces son constantes a trozos, y donde además hay que añadir momentos y cargas puntuales ficticias en los nodos, así como, un momento distribuido ficticio en toda la pieza. Se han desarrollado dos métodos para el análisis: uno para problemas isostáticos y otro general, aplicable tanto a problemas isostáticos como hiperestáticos. El primero determina de entrada la PLE, realizándose a continuación el cálculo por MEF-SNE de dicha pieza, que ahora está en régimen lineal. El general utiliza una homotopía que transforma de manera iterativa, unas leyes constitutivas lineales en las leyes no lineales del material. Cuando se combina con el MEF, la pieza lineal equivalente y la solución del problema original quedan determinadas al final de todo el proceso. Si bien el método general es un procedimiento próximo al de Newton- Raphson, presenta sobre éste la ventaja de permitir visualizar las deformaciones de la pieza en régimen no lineal, de manera tanto cualitativa como cuantitativa, ya que es posible observar en cada paso del proceso la modificación de rigideces (a flexión y cortante) y asimismo la evolución de las acciones ficticias. Por otra parte, los resultados obtenidos comparados con los publicados en la literatura, indican que el concepto PLE ofrece una forma directa y eficiente para analizar con muy buena precisión los problemas asociados a vigas y vigas-columna en las que por su tipología los efectos del cortante no pueden ser despreciados. ABSTRACT The structural concrete clearly remains the most used material in construction due to its strength, rigidity and structural design flexibility. The calculation of concrete structures using beams and beam-column is complex as consequence of the coupling phenomena between stresses and of its nonlinear behaviour. The models most commonly used for analysis are the Bernoulli-Euler and Timoshenko. The second model is strongly recommended when the relationship thickness/span is not small or in case the elements are heavily reinforced. The main objective of this thesis is to analyse the beam and beam-column elements with shear deformation in nonlinear regime, applying the concept of Equivalent Linear Structural Element (ELSE). This concept is basically to solve the problem of a structural element in nonlinear regime, transforming it into an equivalent linear structural element, so that both elements have the same deformations and the same stresses. Firstly, a comparative study of the various proposals of applying shear deformation, of various constitutive and sectional models of structural concrete, and of the nonlinear calculation methods (using finite element methods) was carried out. Considering that the resolution of nonlinear problem is based on solving the successive linear problem, using homotopy process, the linear problem of Timoshenko beam and beam-columns is resolved by FEM, using the exact nodal solutions (ENS) and equivalent distributed load of any order. Thus, the accurate solution approximation can be obtained with very few finite elements for not only nodes, but also for inside of elements. The concept ELSE is introduced to analyse a bar of nonlinear material, subjected to axial forces. The same bar is then used for other nonlinear beam and beam-column analysis with shear deformation. It is noted that, for the last analyses, the solution of a structural element in nonlinear regime is equal to that of linear regime, in which the piecewise-stiffness is constant, the moments and fictitious point loads need to be added at nodes of each element, as well as the fictitious distributed moment on element. Two methods have been developed for analysis: one for isostatic problem and other more general, applicable for both isostatic and hiperstatic problem. The first method determines the ELSE, and then the calculation of this piece is performed by FEM-ENS that now is in linear regime. The general method uses the homotopy that transforms iteratively linear constitutive laws into nonlinear laws of material. When combined with FEM, the ELSE and the solution of the original problem are determined at the end of the whole process. The general method is well known as a procedure closed to Newton-Raphson procedure but presents an advantage that allows displaying deformations of the piece in nonlinear regime, in both qualitative and quantitative way. Since it is possible to observe the modification of stiffness (flexural and shear) in each step of process and also the evolution of the fictitious actions. Moreover, the results compared with those published in the literature indicate that the ELSE concept offers a direct and efficient way to analyze with very good accuracy the problems associated with beams and beams columns in which, by typology, the effects of shear cannot be neglected.
Resumo:
The optimal design of a vertical cantilever beam is presented in this paper. The beam is assumed immersed in an elastic Winkler soil and subjected to several loads: a point force at the tip section, its self weight and a uniform distributed load along its length. lbe optimal design problem is to find the beam of a given length and minimum volume, such that the resultant compressive stresses are admisible. This prohlem is analyzed according to linear elasticity theory and within different alternative structural models: column, Navier-Bernoulli beam-column, Timoshenko beamcolumn (i.e. with shear strain) under conservative loads, typically, constant direction loads. Results obtained in each case are compared, in order to evaluate the sensitivity of model on the numerical results. The beam optimal design is described by the section distribution layout (area, second moment, shear area etc.) along the beam span and the corresponding beam total volume. Other situations, some of them very interesting from a theoretical point of view, with follower loads (Beck and Leipholz problems) are also discussed, leaving for future work numerical details and results.
Resumo:
A flexible structure with surface-bonded piezoceramic patches is modelled using Timoshenko beam theory. Exact mode shapes and natural frequencies associated with the flexural motion are computed for various piezoceramic distributed actuator arrangements. The effects of patch placement and of shear on the modal characteristics are demonstrated using a cantilevered beam as an example. Perfect bonding of the piezoceramic to the beam substructure is assumed, and for the purposes of this paper only passive piezoceramic properties are considered. The modelling technique and results obtained in a closed form are intended to assist investigations into the modelling and control of active structures with surface-bonded piezoceramic actuators. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
This thesis describes an analytical and experimental study to determine the mechanical characteristics of the pump mounting, bell housing type. For numerical purposes, the mount was modelled as a thin circular cylindrical shell with cutouts, stiffened with rings and stringers; the boundary conditions were considered to be either clamped-free or clamped-supporting rigid heavy mass. The theoretical study was concerned with both the static response and the free vibration characteristics of the mount. The approach was based on the Rayleigh-Ritz approximation technique using beam characteristic (axial) and trigonometric (Circumferential) functions in the displacement series, in association with the Love - Timoshenko thin shell theory. Studies were carried out to determine the effect of the supported heavy mass on the static response, frequencies and mode shapes; in addition, the effects of stringers, rings and cutouts on vibration characteristics were investigated. The static and dynamic formulations were both implemented on the Hewlett Packard 9845 computer. The experimental study was conducted to evaluate the results of the natural frequencies and mode shapes, predicted numerically. In the experimental part, a digital computer was used as an experiment controller, which allowed accurate and quick results. The following observations were made: 1. Good agreements were obtained with the results of other investigators. 2. Satisfactory agreement was achieved between the theoretical and experimental results. 3. Rings coupled the axial modal functions of the plain cylinder and tended to increase frequencies, except for the torsion modes where frequencies were reduced. Stringers coupled the circumferential modal functions and tended to decrease frequencies. The effect of rings was stronger than that of stringers. 4. Cutouts tended to reduce frequencies; in general, but this depends on the location of the cutouts; if they are near the free edge then an increase in frequencies is obtained. Cutouts coupled both axial and circumferential modal functions. 5. The supported heavy mass had similar effects to those of the rings, but in an exaggerated manner, particularly in the reduction of torsion frequencies. 6. The method of analysis was found to be a convenient analytical tool for estimating the overall behaviour of the shell with cutouts.