985 resultados para Time Dependant Multiple Random Cipher Code (TDMRC Code)
Resumo:
Purpose: The purpose of this paper is to investigate the use of 802.11e MAC to resolve the transmission control protocol (TCP) unfairness. Design/methodology/approach: The paper shows how a TCP sender may adapt its transmission rate using the number of hops and the standard deviation of recently measured round-trip times to address the TCP unfairness. Findings: Simulation results show that the proposed techniques provide even throughput by providing TCP fairness as the number of hops increases over a wireless mesh network (WMN). Research limitations/implications: Future work will examine the performance of TCP over routing protocols, which use different routing metrics. Other future work is scalability over WMNs. Since scalability is a problem with communication in multi-hop, carrier sense multiple access (CSMA) will be compared with time division multiple access (TDMA) and a hybrid of TDMA and code division multiple access (CDMA) will be designed that works with TCP and other traffic. Finally, to further improve network performance and also increase network capacity of TCP for WMNs, the usage of multiple channels instead of only a single fixed channel will be exploited. Practical implications: By allowing the tuning of the 802.11e MAC parameters that have previously been constant in 802.11 MAC, the paper proposes the usage of 802.11e MAC on a per class basis by collecting the TCP ACK into a single class and a novel congestion control method for TCP over a WMN. The key feature of the proposed TCP algorithm is the detection of congestion by measuring the fluctuation of RTT of the TCP ACK samples via the standard deviation, plus the combined the 802.11e AIFS and CWmin allowing the TCP ACK to be prioritised which allows the TCP ACKs will match the volume of the TCP data packets. While 802.11e MAC provides flexibility and flow/congestion control mechanism, the challenge is to take advantage of these features in 802.11e MAC. Originality/value: With 802.11 MAC not having flexibility and flow/congestion control mechanisms implemented with TCP, these contribute to TCP unfairness with competing flows. © Emerald Group Publishing Limited.
Resumo:
Sparse code division multiple access (CDMA), a variation on the standard CDMA method in which the spreading (signature) matrix contains only a relatively small number of nonzero elements, is presented and analysed using methods of statistical physics. The analysis provides results on the performance of maximum likelihood decoding for sparse spreading codes in the large system limit. We present results for both cases of regular and irregular spreading matrices for the binary additive white Gaussian noise channel (BIAWGN) with a comparison to the canonical (dense) random spreading code. © 2007 IOP Publishing Ltd.
Resumo:
The introduction of agent technology raises several security issues that are beyond conventional security mechanisms capability and considerations, but research in protecting the agent from malicious host attack is evolving. This research proposes two approaches to protecting an agent from being attacked by a malicious host. The first approach consists of an obfuscation algorithm that is able to protect the confidentiality of an agent and make it more difficult for a malicious host to spy on the agent. The algorithm uses multiple polynomial functions with multiple random inputs to convert an agent's critical data to a value that is meaningless to the malicious host. The effectiveness of the obfuscation algorithm is enhanced by addition of noise code. The second approach consists of a mechanism that is able to protect the integrity of the agent using state information, recorded during the agent execution process in a remote host environment, to detect a manipulation attack by a malicious host. Both approaches are implemented using a master-slave agent architecture that operates on a distributed migration pattern. Two sets of experimental test were conducted. The first set of experiments measures the migration and migration+computation overheads of the itinerary and distributed migration patterns. The second set of experiments is used to measure the security overhead of the proposed approaches. The protection of the agent is assessed by analysis of its effectiveness under known attacks. Finally, an agent-based application, known as Secure Flight Finder Agent-based System (SecureFAS) is developed, in order to prove the function of the proposed approaches.