951 resultados para Ticks - Immunization of hosts
Resumo:
We find that different geographical structures of networks lead to varied percolation thresholds, although these networks may have similar abstract topological structures. Thus, strategies for enhancing robustness and immunization of a geographical network are proposed. Using the generating function formalism, we obtain an explicit form of the percolation threshold q(c) for networks containing arbitrary order cycles. For three-cycles, the dependence of q(c) on the clustering coefficients is ascertained. The analysis substantiates the validity of the strategies with analytical evidence.
Resumo:
A novel class of hosts suitable for solution processing has been developed based on a conjugated dendritic scaffold. By increasing the dendron generation, the highest occupied molecular orbital (HOMO) energy level can be tuned to facilitate hole injection, while the triplet energy remains at a high level, sufficient to host high-energy-triplet emitters. A power-efficient blue-electrophosphorescent device based on H2 (see figure) is presented.
Resumo:
The f-->f transition emission of Eu2+ in LiAl5O3 and alpha - Al2O3 is found for the first time, disappearing of the f-->f transition emissiom of Eu2+ and there existing a new band emission in mixture phases of alpha-Al2O3 and gamma-Al2O3. The experimental results are discussed in detail by crystal structure data of hosts and theory of crystal field and covalence. Partial charge of Eu2+ and ionic percentage of Eu-O(F) and M O(F) in hosts are calculated by Sanderson's theory, a content explanation of the experimental phenomena being obtained.
Resumo:
Edwardsiella tarda is the etiological agent of edwardsiellosis, a systematic disease that affects a wide range of marine and freshwater fish cultured worldwide. In order to identify E. tarda antigens with vaccine potential, we in this study conducted a systematic search for E. tarda proteins with secretion capacity. One of the proteins thus identified was Esa1, which contains 795 amino acid residues and shares extensive overall sequence identities with the D15-like surface antigens of several bacterial species. In silico analyses indicated that Esa1 localizes to outer membrane and possesses domain structures that are conserved among bacterial surface antigens. The vaccine potential of purified recombinant Esa1 was examined in a Japanese flounder (Paralichthys olivaceus) model, which showed that fish vaccinated with Esa1 exhibited a high level of survival and produced specific serum antibodies. Passive immunization of naive fish with antisera raised against Esa1 resulted in significant protection against E. tarda challenge. Taking advantage of the secretion capacity of Esa1 and the natural gut-colonization ability of a fish commensal strain, we constructed an Esa1-expressing recombinant strain, FP3/pJsa1. Western immunoblot and agglutination analyses showed that FP3/pJsa1 produces outer membrane-localized Esa1 and forms aggregates in the presence of anti-Esa1 antibodies. Vaccination analyses showed that FP3/pJsa1 as an intraperitoneal injection vaccine and an oral vaccine embedded in alginate microspheres produced relative percent survival rates of 79% and 52%, respectively, under severe challenging conditions that resulted in 92-96% mortality in control fish. Further analyses showed that following oral vaccination, FP3/pJsa1 was able to colonize in the gut but unable to disseminate into other tissues. Together these results indicate that Esa1 is a protective immunogen and an effective oral vaccine when delivered by FP3/pJsa1 as a surface-anchored antigen. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper explores reasons for the high degree of variability in the sizes of ASes that have recently been observed, and the processes by which this variable distribution develops. AS size distribution is important for a number of reasons. First, when modeling network topologies, an AS size distribution assists in labeling routers with an associated AS. Second, AS size has been found to be positively correlated with the degree of the AS (number of peering links), so understanding the distribution of AS sizes has implications for AS connectivity properties. Our model accounts for AS births, growth, and mergers. We analyze two models: one incorporates only the growth of hosts and ASes, and a second extends that model to include mergers of ASes. We show analytically that, given reasonable assumptions about the nature of mergers, the resulting size distribution exhibits a power law tail with the exponent independent of the details of the merging process. We estimate parameters of the models from measurements obtained from Internet registries and from BGP tables. We then compare the models solutions to empirical AS size distribution taken from Mercator and Skitter datasets, and find that the simple growth-based model yields general agreement with empirical data. Our analysis of the model in which mergers occur in a manner independent of the size of the merging ASes suggests that more detailed analysis of merger processes is needed.
Resumo:
In this paper, we propose and evaluate an implementation of a prototype scalable web server. The prototype consists of a load-balanced cluster of hosts that collectively accept and service TCP connections. The host IP addresses are advertised using the Round Robin DNS technique, allowing any host to receive requests from any client. Once a client attempts to establish a TCP connection with one of the hosts, a decision is made as to whether or not the connection should be redirected to a different host---namely, the host with the lowest number of established connections. We use the low-overhead Distributed Packet Rewriting (DPR) technique to redirect TCP connections. In our prototype, each host keeps information about connections in hash tables and linked lists. Every time a packet arrives, it is examined to see if it has to be redirected or not. Load information is maintained using periodic broadcasts amongst the cluster hosts.
Resumo:
The effectiveness of vaccinating males against the human papillomavirus (HPV) remains a controversial subject. Many existing studies conclude that increasing female coverage is more effective than diverting resources into male vaccination. Recently, several empirical studies on HPV immunization have been published, providing evidence of the fact that marginal vaccination costs increase with coverage. In this study, we use a stochastic agent-based modeling framework to revisit the male vaccination debate in light of these new findings. Within this framework, we assess the impact of coverage-dependent marginal costs of vaccine distribution on optimal immunization strategies against HPV. Focusing on the two scenarios of ongoing and new vaccination programs, we analyze different resource allocation policies and their effects on overall disease burden. Our results suggest that if the costs associated with vaccinating males are relatively close to those associated with vaccinating females, then coverage-dependent, increasing marginal costs may favor vaccination strategies that entail immunization of both genders. In particular, this study emphasizes the necessity for further empirical research on the nature of coverage-dependent vaccination costs.
Resumo:
UNLABELLED: The human fungal pathogen Cryptococcus neoformans is capable of infecting a broad range of hosts, from invertebrates like amoebas and nematodes to standard vertebrate models such as mice and rabbits. Here we have taken advantage of a zebrafish model to investigate host-pathogen interactions of Cryptococcus with the zebrafish innate immune system, which shares a highly conserved framework with that of mammals. Through live-imaging observations and genetic knockdown, we establish that macrophages are the primary immune cells responsible for responding to and containing acute cryptococcal infections. By interrogating survival and cryptococcal burden following infection with a panel of Cryptococcus mutants, we find that virulence factors initially identified as important in causing disease in mice are also necessary for pathogenesis in zebrafish larvae. Live imaging of the cranial blood vessels of infected larvae reveals that C. neoformans is able to penetrate the zebrafish brain following intravenous infection. By studying a C. neoformans FNX1 gene mutant, we find that blood-brain barrier invasion is dependent on a known cryptococcal invasion-promoting pathway previously identified in a murine model of central nervous system invasion. The zebrafish-C. neoformans platform provides a visually and genetically accessible vertebrate model system for cryptococcal pathogenesis with many of the advantages of small invertebrates. This model is well suited for higher-throughput screening of mutants, mechanistic dissection of cryptococcal pathogenesis in live animals, and use in the evaluation of therapeutic agents. IMPORTANCE: Cryptococcus neoformans is an important opportunistic pathogen that is estimated to be responsible for more than 600,000 deaths worldwide annually. Existing mammalian models of cryptococcal pathogenesis are costly, and the analysis of important pathogenic processes such as meningitis is laborious and remains a challenge to visualize. Conversely, although invertebrate models of cryptococcal infection allow high-throughput assays, they fail to replicate the anatomical complexity found in vertebrates and, specifically, cryptococcal stages of disease. Here we have utilized larval zebrafish as a platform that overcomes many of these limitations. We demonstrate that the pathogenesis of C. neoformans infection in zebrafish involves factors identical to those in mammalian and invertebrate infections. We then utilize the live-imaging capacity of zebrafish larvae to follow the progression of cryptococcal infection in real time and establish a relevant model of the critical central nervous system infection phase of disease in a nonmammalian model.
Resumo:
1. The effect of spatial scale on the interactions between three hymenopteran parasitoids and their weevil hosts was investigated. The parasitoid Mesopolobus incultus (Walker) parasitised Gymnetron pascuorum Gyll.; the parasitoids Entodon sparetus (Walker) and Bracon sp. parasitised Mecinus pyraster Herbst. Both of these weevils develop inside the seedhead of Plantago lanceolata L. but occupy different niches. Seedheads were sampled annually from 162 plants at each of two experimental sites consisting of a series of habitat patches of two distinct sizes. Data were analysed from three site-years. 2. Parasitoid densities at each site-year were closely related to the abundance of their respective weevil hosts. The overall proportion of hosts parasitised was more variable for M. incultus than for E. sparetus and Bracon sp. 3. Changes in spatial scale affected the variability of parasitoid densities. For M. incultus, there was generally a greater degree of additional heterogeneity for all increases of scale; for E. sparetus, this was true only at the largest scales; for Bracon sp., all components of variance were negative. 4. The rate of parasitism was related to host density in different ways at different spatial scales. Mesopolobus incultus exhibited inverse density dependence at the finest (seedhead) scale, direct density dependence at the intermediate (plant) scale, and density independence at the large (habitat area 729 m2) scale. Entodon sparetus showed no response to variation in host density at any spatial scale. Bracon sp. showed direct density dependence only at the intermediate and largest scales. 5. Parasitoids E. sparetus and Bracon sp. seemed able to detect more than one M. pyraster individual in seedheads with multiple host occupancy; a greater incidence of conspecific parasitoids than expected emerged from such seedheads.
Resumo:
The microsporidian parasite, Pleistophora mulleri, infects the abdominal muscle of the freshwater amphipod Gammarus duebeni celticus. We recently showed that P. mulleri infection was associated with G. d. celticus hosts being more vulnerable to predation by the invasive amphipod Gammarus pulex. Parasitized G. d. celticus also had a reduced ability to prey upon other co-occurring amphipods. We suggested the parasite may have pervasive influences on host ecology and behaviour. Here, we examine the association between P. mulleri parasitism and parameters influencing individual host fitness, behaviour and interspecific interactions. We also investigate the relationship between parasite prevalence and host population structure in the field. In our G. d. celticus study population, P. mulleri prevalence was strongly seasonal, ranging from 8.5% in summer to 44.9% in winter. The relative abundance of hosts with the heaviest parasite burden increased during summer, which coincided with high host mortality, suggesting that parasitism may regulate host abundance to some degree. Females were more likely to be parasitized than males and parasitized males were paired with smaller females than unparasitized males. Parasitism was associated with reduction in the host's activity level and reduced both its predation on the isopod Asellus aquaticus and aggression towards precopula pairs of the invasive G. pulex. We discuss the pervasive influence of this parasite on the ecology of its host.
Resumo:
Vaccine-mediated prevention of primary HIV-1 infection at the heterosexual mucosal portal of entry may be facilitated by highly optimised formulations or drug delivery devices for intravaginal (i.vag) immunization. Previously we described hydroxyethylcellulose (HEC)-based rheologically structured gel vehicles (RSVs) for vaginal immunization of an HIV-1 vaccine candidate, a soluble recombinant trimeric HIV-1 clade-C envelope glycoprotein designated CN54gp140. Here we investigated the efficacy of lyophilized solid dosage formulations (LSDFs) for prolonging antigen stability and as i.vag delivery modalities. LSDFs were designed and developed that upon i.vag administration they would reconstitute with the imbibing of vaginal fluid to mucoadhesive, site-retentive semi-solids. Mice were immunized with lyophilized equivalents of (i) RSVs, (ii) modified versions of the RSVs more suited to lyophilization (sodium carboxymethyl cellulose (NaCMC)-based gels) and (iii) Carbopol® gel, all containing CN54gp140. NaCMC-based LSDFs provided significantly enhanced antigen stability compared to aqueous-based RSVs. Rheological analysis indicated the NaCMC-based LSDFs would offer enhanced vaginal retention in woman compared to more conventional vaginal gel formulations. All LSDFs were well tolerated in the mouse model. Following i.vag administration, all LSDFs boosted systemic CN54gp140-specific antibody responses in sub-cutaneously primed mice. Induction of CN54gp140-specific antibody responses in the female genital tract was evident. Of all the LSDFs the fastest releasing which was lyophilized Carbopol® gel elicited immune responses comparable to buffer instillation of antigen suggesting that rather than slower sustained release, initial high burst release from the LSDFs may suffice. The boosting of specific immune responses upon i.vag administration indicates that LSDFs are viable mucosal vaccine delivery modalities promoting antigen stability and facilitating intimate exposure of CN54gp140 to the mucosal-associated lymphoid tissue of the female genital tract.
Resumo:
Multiple extracellular mitogens are involved in the pathogenesis of proliferative forms of glomerulonephritis (GN), In vitro studies demonstrate the pivotal role of extracellular signal-regulated kinase (ERK) in the regulation of cellular proliferation in response to extracellular mitogens. In this study, we examined whether this kinase, as a convergence point of mitogenic stimuli, is activated in proliferative GN in vivo, Two different proliferative forms of anti-glomerular basal membrane (GEM) GN in rats were induced and whole cortical tissue as well as isolated glomeruli examined using kinase activity assays and Western blot analysis, Administration of rabbit anti-rat GEM serum to rats, preimmunized with rabbit IgG, induced an accelerated crescentic anti-GEM GN. A significant increase in cortical, and more dramatically glomerular ERK activity was detected at 1, 3, and 7 d after induction of GN, Immunization of Wistar-Kyoto rats with bovine GEM also induced a crescentic anti-GBM GN with an increase of renal cortical ERK activity after 4, 6, and 8 wk, ERK is phosphorylated and activated by the MAP kinase/ERK kinase (MEK), We detected a significant increase in the expression of glomerular MEK in the accelerated form of anti-GEM CN, providing a possible mechanism of long-term activation of ERK in this disease model, In contrast to ERK, activation of stress-activated protein kinase was only detectable at early stages of proliferative GN, indicating these related kinases to serve distinct roles in the pathogenesis of GN, Our observations point to ERK as a putative mediator of the proliferative response to immune injury in GN and suggest that upregulation of MEK is involved in the long-term regulation of ERK in vivo.
Resumo:
A Rift Valley fever (RVF) epidemic affecting animals on domestic livestock farms was reported in South Africa during January-August 2010. The first cases occurred after heavy rainfall, and the virus subsequently spread countrywide. To determine the possible effect of environmental conditions and vaccination on RVF virus transmissibility, we estimated the effective reproduction number (R) for the virus over the course of the epidemic by extending the Wallinga and Teunis algorithm with spatial information. Re reached its highest value in mid-February and fell below unity around mid-March, when vaccination coverage was 7.5%-45.7% and vector-suitable environmental conditions were maintained. The epidemic fade-out likely resulted first from the immunization of animals following natural infection or vaccination. The decline in vector-suitable environmental conditions from April onwards and further vaccination helped maintain R below unity. Increased availability of vaccine use data would enable evaluation of the effect of RVF vaccination campaigns.
Resumo:
Animal models have been developed for the study of rickettsial pathogenesis. However, to understand what occurs during the natural route of rickettsial transmission via the tick bite, the role of tick saliva should be considered in these models. To address this, we analysed the role of tick saliva in the transmission of Rickettsia conorii (Rickettsiales: Rickettsiaceae) in a murine host by intradermally (i.d.) inoculating two groups of susceptible C3H/HeJ mice with this Rickettsia, and infesting one group with nymphal Rhipicephalus sanguineus sensu lato (Ixodida: Ixodidae) ticks. Quantification of bacterial loads and mRNA levels of interleukin-1β (IL-1β), IL-10 and NF-κB was performed in C3H/HeJ lung samples by real-time quantitative polymerase chain reaction (PCR) and real-time reverse transcriptase PCR, respectively. Lung histology was examined to evaluate the pathological manifestations of infection. No statistically significant difference in bacterial load in the lungs of mice was observed between these two groups; however, a statistically significant difference was observed in levels of IL-1β and NF-κB, both of which were higher in the group inoculated with rickettsiae but not infected with ticks. Lung histology in both groups of animals revealed infiltration of inflammatory cells. Overall, this study showed that i.d. inoculation of R. conorii caused infection in the lungs of C3H/HeJ mice and tick saliva inhibited proinflammatory effects.
Resumo:
Tese de doutoramento, Ciências Agrárias (Proteção de Plantas), Faculdade de Ciência e Tecnologia, Universidade do Algarve, 2014