964 resultados para Thyroid hormone responsive
Resumo:
We investigated thyroid hormone levels in menopausal BrC patients and verified the action of triiodothyronine on genes regulated by estrogen and by triiodothyronine itself in BrC tissues. We selected 15 postmenopausal BrC patients and a control group of 18 postmenopausal women without BrC. We measured serum TPO-AB, TSH, FT4, and estradiol, before and after surgery, and used immunohistochemistry to examine estrogen and progesterone receptors. BrC primary tissue cultures received the following treatments: ethanol, triiodothyronine, triiodothyronine plus 4-hydroxytamoxifen, 4-hydroxytamoxifen, estrogen, or estrogen plus 4-hydroxytamoxifen. Genes regulated by estrogen (TGFA, TGFB1, and PGR) and by triiodothyronine (TNFRSF9, BMP-6, and THRA) in vitro were evaluated. TSH levels in BrC patients did not differ from those of the control group (1.34 ± 0.60 versus 2.41 ± 1.10 μ U/mL), but FT4 levels of BrC patients were statistically higher than controls (1.78 ± 0.20 versus 0.95 ± 0.16 ng/dL). TGFA was upregulated and downregulated after estrogen and triiodothyronine treatment, respectively. Triiodothyronine increased PGR expression; however 4-hydroxytamoxifen did not block triiodothyronine action on PGR expression. 4-Hydroxytamoxifen, alone or associated with triiodothyronine, modulated gene expression of TNFRSF9, BMP-6, and THRA, similar to triiodothyronine treatment. Thus, our work highlights the importance of thyroid hormone status evaluation and its ability to interfere with estrogen target gene expression in BrC samples in menopausal women.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objective: To examine the effect of different doses of triiodothyronine (T3) on mRNA levels of thyroid hormone receptors, TRα and TRβ, at different times. Materials and methods: 3T3-L1 adipocytes were incubated with T3 (physiological dose: F; supraphysiological doses: SI or SII), or without T3 (control, C) for 0.5, 1, 6, or 24h. TRα and TRβ mRNA was detected using real-time polymerase chain reaction. Results: F increased TRβ mRNA levels at 0.5h. After 1h, TRα levels increased with F and SI and TRβ levels decreased with SII compared with C, F, and SI. After 6h, both genes were suppressed at all concentrations. In 24h, TRα and TRβ levels were similar to those of C group. Conclusions: T3 action with F began at 1h for TRα and at 0.5h for TRβ. These results suggest the importance of knowing the times and doses that activate T3 receptors in adipocytes.
Thyroid hormone action is required for normal cone opsin expression during mouse retinal development
Resumo:
PURPOSE. The expression of S- and M-opsins in the murine retina is altered in different transgenic mouse models with mutations in the thyroid hormone receptor (TR)-beta gene, demonstrating an important role of thyroid hormone (TH) in retinal development. METHODS. The spatial expression of S- and M-opsin was compared in congenital hypothyroidism and in two different TR mutant mouse models. One mouse model contains a ligand-binding mutation that abolishes TH binding and results in constitutive binding to nuclear corepressors. The second model contains a mutation that blocks binding of coactivators to the AF-2 domain without affecting TH binding. RESULTS. Hypothyroid newborn mice showed an increase in S- opsin expression that was completely independent of the genotype. Concerning M-opsin expression, hypothyroidism caused a significant decrease (P < 0.01) only in wild-type animals. When TR beta 1 and -beta 2 were T3-binding defective, the pattern of opsin expression was similar to TR beta ablation, showing increased S- opsin expression in the dorsal retina and no expression of M-opsin in the entire retina. In an unexpected finding, immunostaining for both opsins was detected when both subtypes of TR beta were mutated in the helix 12 AF-2 domain. CONCLUSIONS. The results show, for the first time, that the expression of S- and M-opsin is dependent on normal thyroid hormone levels during development.
Resumo:
Objective: The aim of this study was to determine thyroid hormone (TH) profile in postmenopausal patients with breast cancer (BC). Subjects and methods: 12 CaM patients stages I or II, without interventions that could interfere with tumor progression were selected, as well as and a control group with 18 postmenopausal women without CaM. We measured serum anti-thyroperoxidase antibody (TPOAB), thyroid-stimulating hormone (TSH), free thyroxine (T4L), estradiol (E2), follicle-stimulating hormone (FSH), and luteinizing hormone (LH), before and after surgery, besides immunohistochemistry for estrogen (ER) and progesterone (PR) receptors. Results: Four patients with CaM showed changes in thyroid hormone profile: two had hyperthyroidism, one hypothyroidism, and one was positive for TPO-AB. All of them positive for ER and PR.TSH levels in breast cancer patients were not different from levels found in the control group (1.89 +/- 1.56 vs. 2.86 +/- 3.12 mIU/mL), but the levels of T4L in patients with CaM were statistically higher than those of the control group (1.83 +/- 0.57 vs. 1.10 +/- 0.20 ng/dL). Conclusion: These results reinforce the need for assessment of thyroid status in CaM patients, since in the absence of E2, changes in clinical HTs can act in E2-controlled processes. Arq Bras Endocrinol Metab. 2012;56(4):238-43
Resumo:
Evaluating the activity of the complement system under conditions of altered thyroid hormone levels might help elucidate the role of complement in triggering autoimmune processes. Here, we investigated alternative pathway (AP) activity in male Wistar rats (180 ± 10 g) after altering their thyroid hormone levels by treatment with triiodothyronine (T3), propylthiouracil (PTU) or thyroidectomy. T3 and thyroxine (T4) levels were determined by chemiluminescence assays. Hemolytic assays were performed to evaluate the lytic activity of the AP. Factor B activity was evaluated using factor B-deficient serum. An anti-human factor B antibody was used to measure factor B levels in serum by radial immunodiffusion. T3 measurements in thyroidectomized animals or animals treated with PTU demonstrated a significant reduction in hormone levels compared to control. The results showed a reduction in AP lytic activity in rats treated with increasing amounts of T3 (1, 10, or 50 µg). Factor B activity was also decreased in the sera of hyperthyroid rats treated with 1 to 50 µg T3. Additionally, treating rats with 25 µg T3 significantly increased factor B levels in their sera (P < 0.01). In contrast, increased factor B concentration and activity (32%) were observed in hypothyroid rats. We conclude that alterations in thyroid hormone levels affect the activity of the AP and factor B, which may in turn affect the roles of AP and factor B in antibody production.
Resumo:
Hyperthyroidism promotes cardiac hypertrophy and the Angiotensin type 1 receptor (AT1R) has been demonstrated to mediate part of this response. Recent studies have uncovered a potentially important role for the microRNAs (miRNAs) in the control of diverse aspects of cardiac function. Then, the objective of the present study was to investigate the action promoted by hyperthyroidism on β-MHC/miR-208b expression and on α-MHC/miR-208a expression, as well as the possible contribution of the AT1R in this event. The findings of this study confirmed that AT1R is a key mediator of the cardiac hypertrophy induced by hyperthyroidism. Additionally, we demonstrated that like β-MHC, miR-208b was down-regulated in the hyperthyroid group. Similarly, like the expression of its host gene, α-MHC, miR-208a expression was up-regulated in response to hyperthyroidism. Finally, our data suggest for the first time that AT1R mediates the hyperthyroidism-induced increase on cardiac miRNA-208a/α-MHC levels, while does not influence on the reduction of miRNA-208b/β-MHC levels.
Resumo:
To investigate the regulation of the human fatty acid synthase gene by the thyroid hormone triiodothyronine, various constructs of the human fatty acid synthase promoter and the luciferase reporter gene were transfected in combination with plasmids expressing the thyroid hormone and the retinoid X receptors in HepG2 cells. The reporter gene was activated 25-fold by the thyroid hormone in the presence of the thyroid hormone receptor. When both the thyroid hormone and the retinoid X receptors were expressed in HepG2 cells, there was about a 100-fold increase in reporter gene expression. 5′-Deletion analysis disclosed two thyroid hormone response elements, TRE1 (nucleotides −870 to −650) and TRE2 (nucleotides −272 to −40), in the human fatty acid synthase promoter. The presence of thyroid hormone response elements in these two regions of the promoter was confirmed by cloning various fragments of these two regions in the minimal thymidine kinase promoter−luciferase reporter gene plasmid construct and determining reporter gene expression. The results of this cloning procedure and those of electrophoretic mobility shift assays indicated that the sequence GGGTTAcgtcCGGTCA (nucleotides −716 to −731) represents TRE1 and that the sequence GGGTCC (nucleotides −117 to −112) represents TRE2. The sequence of TRE1 is very similar to the consensus sequence of the thyroid hormone response element, whereas the sequence of TRE2 contains only a half-site of the thyroid hormone response element consensus motif because it lacks the direct repeat. The sequences on either side of TRE2 seem to influence its response to the thyroid hormone and retinoid X receptors.
Resumo:
The retinoblastoma protein (Rb) plays a critical role in cell proliferation, differentiation, and development. To decipher the mechanism of Rb function at the molecular level, we have systematically characterized a number of Rb-interacting proteins, among which is the clone C5 described here, which encodes a protein of 1,978 amino acids with an estimated molecular mass of 230 kDa. The corresponding gene was assigned to chromosome 14q31, the same region where genetic alterations have been associated with several abnormalities of thyroid hormone response. The protein uses two distinct regions to bind Rb and thyroid hormone receptor (TR), respectively, and thus was named Trip230. Trip230 binds to Rb independently of thyroid hormone while it forms a complex with TR in a thyroid hormone-dependent manner. Ectopic expression of the protein Trip230 in cells, but not a mutant form that does not bind to TR, enhances specifically TR-dependent transcriptional activity. Coexpression of wild-type Rb, but not mutant Rb that fails to bind to Trip230, inhibits such activity. These results not only identify a coactivator molecule that modulates TR activity, but also uncover a role for Rb in a pathway that responds to thyroid hormone.
Resumo:
Exogenous thyroid hormone (TH) induces premature differentiation of the zebrafish pectoral fins, which are analogous to the forelimbs of tetrapods. It accelerates the growth of the pelvic fins but not precociously. Goitrogens, which are chemical inhibitors of TH synthesis by the thyroid gland, inhibit the transition from larva to juvenile fish including the formation of scales, and pigment pattern; they stunt the growth of both pectoral and pelvic paired fins. Inhibition by goitrogens is rescued by the simultaneous addition of thyroxine. The effect of adding TH to the rearing water of the postembryonic Mexican axolotl was reinvestigated under conditions that permit continued growth and development. In addition to morphological changes that have been described, TH greatly stimulates axolotl limb growth causing the resulting larva to be proportioned as an adult in about two months. This study extends the known evolutionary relatedness of tetrapod limbs and fish fins to include the TH stimulation of salamander limb and zebrafish fin growth, and suggests that TH is required to complete the life cycle of a typical bony fish and a salamander at the same developmental stage that it controls anuran and flounder metamorphosis.
Resumo:
Amphibian metamorphosis is marked by dramatic, thyroid hormone (TH)-induced changes involving gene regulation by TH receptor (TR). It has been postulated that TR-mediated gene regulation involves chromatin remodeling. In the absence of ligand, TR can repress gene expression by recruiting a histone deacetylase complex, whereas liganded TR recruits a histone acetylase complex for gene activation. Earlier studies have led us to propose a dual function model for TR during development. In premetamorphic tadpoles, unliganded TR represses transcription involving histone deacetylation. During metamorphosis, endogenous TH allows TR to activate gene expression through histone acetylation. Here using chromatin immunoprecipitation assay, we directly demonstrate TR binding to TH response genes constitutively in vivo in premetamorphic tadpoles. We further show that TH treatment leads to histone deacetylase release from TH response gene promoters. Interestingly, in whole animals, changes in histone acetylation show little correlation with the expression of TH response genes. On the other hand, in the intestine and tail, where TH response genes are known to be up-regulated more dramatically by TH than in most other organs, we demonstrate that TH treatment induces gene activation and histone H4 acetylation. These data argue for a role of histone acetylation in transcriptional regulation by TRs during amphibian development in some tissues, whereas in others changes in histone acetylation levels may play no or only a minor role, supporting the existence of important alternative mechanisms in gene regulation by TR.
Resumo:
Patients with mutations in the thyroid hormone receptor β (TRβ) gene manifest resistance to thyroid hormone (RTH), resulting in a constellation of variable phenotypic abnormalities. To understand the molecular basis underlying the action of mutant TRβ in vivo, we generated mice with a targeted mutation in the TRβ gene (TRβPV; PV, mutant thyroid hormone receptor kindred PV) by using homologous recombination and the Cre/loxP system. Mice expressing a single PVallele showed the typical abnormalities of thyroid function found in heterozygous humans with RTH. Homozygous PV mice exhibit severe dysfunction of the pituitary–thyroid axis, impaired weight gains, and abnormal bone development. This phenotype is distinct from that seen in mice with a null mutation in the TRβ gene. Importantly, we identified abnormal expression patterns of several genes in tissues of TRβPV mice, demonstrating the interference of the mutant TR with the gene regulatory functions of the wild-type TR in vivo. These results show that the actions of mutant and wild-type TRβ in vivo are distinct. This model allows further study of the molecular action of mutant TR in vivo, which could lead to better treatment for RTH patients.
Resumo:
To elucidate the role of thyroid hormone receptors (TRs) α1 and β in the development of hearing, cochlear functions have been investigated in mice lacking TRα1 or TRβ. TRs are ligand-dependent transcription factors expressed in the developing organ of Corti, and loss of TRβ is known to impair hearing in mice and in humans. Here, TRα1-deficient (TRα1−/−) mice are shown to display a normal auditory-evoked brainstem response, indicating that only TRβ, and not TRα1, is essential for hearing. Because cochlear morphology was normal in TRβ−/− mice, we postulated that TRβ regulates functional rather than morphological development of the cochlea. At the onset of hearing, inner hair cells (IHCs) in wild-type mice express a fast-activating potassium conductance, IK,f, that transforms the immature IHC from a regenerative, spiking pacemaker to a high-frequency signal transmitter. Expression of IK,f was significantly retarded in TRβ−/− mice, whereas the development of the endocochlear potential and other cochlear functions, including mechanoelectrical transduction in hair cells, progressed normally. TRα1−/− mice expressed IK,f normally, in accord with their normal auditory-evoked brainstem response. These results establish that the physiological differentiation of IHCs depends on a TRβ-mediated pathway. When defective, this may contribute to deafness in congenital thyroid diseases.