921 resultados para Thyroid Diseases
Resumo:
Oral diseases, or stomatognathic diseases, denote the diseases of the mouth (“stoma”) and jaw (“gnath”). Dental caries and periodontal diseases have been traditionally considered as the most important global oral health burdens. It is important to note that in oral diagnostics, the greatest challenges are determining the clinical utility of potential biomarkers for screening (in asymptomatic people), predicting the early onset of disease (prognostic tests), and evaluating the disease activity and the efficacy of therapy through innovative diagnostic tests. An oral diagnostic test, in principle, should provide valuable information for differential diagnosis, localization of disease, and severity of infection. This information can then be incorporated by the physician when planning treatments and will provide means for assessing the effectiveness of therapy.
Resumo:
Background Little information exists regarding the interaction effects of obesity with long-term air pollution exposure on cardiovascular diseases (CVDs) and stroke in areas of high pollution. The aim of the present study is to examine whether obesity modifies CVD-related associations among people living in an industrial province of northeast China. Methods We studied 24,845 Chinese adults, aged 18 to 74 years old, from three Northeastern Chinese cities in 2009 utilizing a cross-sectional study design. Body weight and height were measured by trained observers. Overweight and obesity were defined as a body mass index (BMI) between 25–29.9 and ≥ 30 kg/m2, respectively. Prevalence rate and related risk factors of cardiovascular and cerebrovascular diseases were investigated by a questionnaire. Three-year (2006–2008) average concentrations of particulate matter (PM10), sulfur dioxide (SO2), nitrogen dioxides (NO2), and ozone (O3) were measured by fixed monitoring stations. All the participants lived within 1 km of air monitoring sites. Two-level logistic regression (personal level and district-specific pollutant level) was used to examine these effects, controlling for covariates. Results We observed significant interactions between exposure and obesity on CVDs and stroke. The associations between annual pollutant concentrations and CVDs and stroke were strongest in obese subjects (OR 1.15–1.47 for stroke, 1.33–1.59 for CVDs), less strong in overweight subjects (OR 1.22–1.35 for stroke, 1.07–1.13 for CVDs), and weakest in normal weight subjects (OR ranged from 0.98–1.01 for stroke, 0.93–1.15 for CVDs). When stratified by gender, these interactions were significant only in women. Conclusions Study findings indicate that being overweight and obese may enhance the effects of air pollution on the prevalence of CVDs and stroke in Northeastern metropolitan China. Further studies will be needed to investigate the temporality of BMI relative to exposure and onset of disease.
Resumo:
To further investigate susceptibility loci identified by genome-wide association studies, we genotyped 5,500 SNPs across 14 associated regions in 8,000 samples from a control group and 3 diseases: type 2 diabetes (T2D), coronary artery disease (CAD) and Graves' disease. We defined, using Bayes theorem, credible sets of SNPs that were 95% likely, based on posterior probability, to contain the causal disease-associated SNPs. In 3 of the 14 regions, TCF7L2 (T2D), CTLA4 (Graves' disease) and CDKN2A-CDKN2B (T2D), much of the posterior probability rested on a single SNP, and, in 4 other regions (CDKN2A-CDKN2B (CAD) and CDKAL1, FTO and HHEX (T2D)), the 95% sets were small, thereby excluding most SNPs as potentially causal. Very few SNPs in our credible sets had annotated functions, illustrating the limitations in understanding the mechanisms underlying susceptibility to common diseases. Our results also show the value of more detailed mapping to target sequences for functional studies. © 2012 Nature America, Inc. All rights reserved.
Resumo:
Patrick Danoy, Meng Wei, Hadler Johanna, et al. Association of variants in MMEL1 and CTLA4 with rheumatoid arthritis in the Han Chinese population. Ann Rheum Dis 2011;70:1793–97. The following authors were listed as contributing equally to the study...
Resumo:
Editorial
Resumo:
Grass pollens of the temperate (Pooideae) subfamily and subtropical subfamilies of grasses are major aeroallergen sources worldwide. The subtropical Chloridoideae (e.g. Cynodon dactylon; Bermuda grass) and Panicoideae (e.g. Paspalum notatum; Bahia grass) species are abundant in parts of Africa, India, Asia, Australia and the Americas, where a large and increasing proportion of the world's population abide. These grasses are phylogenetically and ecologically distinct from temperate grasses. With the advent of global warming, it is conceivable that the geographic distribution of subtropical grasses and the contribution of their pollen to the burden of allergic rhinitis and asthma will increase. This review aims to provide a comprehensive synthesis of the current global knowledge of (i) regional variation in allergic sensitivity to subtropical grass pollens, (ii) molecular allergenic components of subtropical grass pollens and (iii) allergic responses to subtropical grass pollen allergens in relevant populations. Patients from subtropical regions of the world show higher allergic sensitivity to grass pollens of Chloridoideae and Panicoideae grasses, than to temperate grass pollens. The group 1 allergens are amongst the allergen components of subtropical grass pollens, but the group 5 allergens, by which temperate grass pollen extracts are standardized for allergen content, appear to be absent from both subfamilies of subtropical grasses. Whilst there are shared allergenic components and antigenic determinants, there are additional clinically relevant subfamily-specific differences, at T- and B-cell levels, between pollen allergens of subtropical and temperate grasses. Differential immune recognition of subtropical grass pollens is likely to impact upon the efficacy of allergen immunotherapy of patients who are primarily sensitized to subtropical grass pollens. The literature reviewed herein highlights the clinical need to standardize allergen preparations for both types of subtropical grass pollens to achieve optimal diagnosis and treatment of patients with allergic respiratory disease in subtropical regions of the world. © 2014 John Wiley & Sons Ltd.
Resumo:
Both ankylosing spondylitis (AS) and rheumatoid arthritis (RA) are common, highly heritable conditions, the pathogenesis of which are incompletely understood. Gene-mapping studies in both conditions have over the last couple of years made major breakthroughs in identifying the mechanisms by which these diseases occur. Considering RA, there is an over-representation of genes involved in TNF signalling and the NFκB pathway that have been shown to influence the disease risk. There is also considerable sharing of susceptibility genes between RA and other autoimmune diseases such as systemic lupus erythematosus, type 1 diabetes, autoimmune thyroid disease and celiac disease, with thus far little overlap with AS. In AS, genes involved in response to IL12/IL23, and in endoplasmic reticulum peptide presentation, have been identified, but a full genomewide association study has not yet been reported.
Resumo:
Background Heatwaves have a significant impact on population health including both morbidity and mortality. In this study we examined the association between heatwaves and emergency hospital admissions (EHAs) for renal diseases in children (aged 0–14 years) in Brisbane, Australia. Methods Daily data on EHAs for renal diseases in children and exposure to temperature and air pollution were obtained for Brisbane city from January 1, 1996 to December 31, 2005. A time-stratified case-crossover design was used to compare the risks for renal diseases between heatwave and non-heatwave periods. Results There were 1565 EHAs for renal diseases in children during the study period. Heatwaves exhibited a significant impact on EHAs for renal diseases in children after adjusting for confounding factors (odds ratio: 3.6; 95% confidence interval: 1.4–9.5). The risk estimates differed with lags and the use of different heatwave definitions. Conclusions There was a significant increase in EHAs for renal diseases in children during heatwaves in Brisbane, a subtropical city where people are well accustomed to warm weather. This finding may have significant implications for pediatric renal care, particularly in subtropical and tropical regions.
Resumo:
Carbon nanostructures (CNs) are amongst the most promising biorecognition nanomaterials due to their unprecedented optical, electrical and structural properties. As such, CNs may be harnessed to tackle the detrimental public health and socio-economic adversities associated with neurodegenerative diseases (NDs). In particular, CNs may be tailored for a specific determination of biomarkers indicative of NDs. However, the realization of such a biosensor represents a significant technological challenge in the uniform fabrication of CNs with outstanding qualities in order to facilitate a highly-sensitive detection of biomarkers suspended in complex biological environments. Notably, the versatility of plasma-based techniques for the synthesis and surface modification of CNs may be embraced to optimize the biorecognition performance and capabilities. This review surveys the recent advances in CN-based biosensors, and highlights the benefits of plasma-processing techniques to enable, enhance, and tailor the performance and optimize the fabrication of CNs, towards the construction of biosensors with unparalleled performance for the early diagnosis of NDs, via a plethora of energy-efficient, environmentally-benign, and inexpensive approaches.
Resumo:
Endosplasmic reticulum aminopeptidase 1 (ERAP1), endoplasmic reticulum aminopeptidase 2 (ERAP2) and puromycin-sensitive aminopeptidase (NPEPPS) are key zinc metallopeptidases that belong to the oxytocinase subfamily of M1 aminopeptidase family. NPEPPS catalyzes the processing of proteosome-derived peptide repertoire followed by trimming of antigenic peptides by ERAP1 and ERAP2 for presentation on major histocompatibility complex (MHC) Class I molecules. A series of genome-wide association studies have demonstrated associations of these aminopeptidases with a range of immune-mediated diseases such as ankylosing spondylitis, psoriasis, Behçet's disease, inflammatory bowel disease and type I diabetes, and significantly, genetic interaction between some aminopeptidases and HLA Class I loci with which these diseases are strongly associated. In this review, we highlight the current state of understanding of the genetic associations of this class of genes, their functional role in disease, and potential as therapeutic targets.
Resumo:
Shared aetiopathogenic factors among immune-mediated diseases have long been suggested by their co-familiality and co-occurrence, and molecular support has been provided by analysis of human leukocyte antigen (HLA) haplotypes and genome-wide association studies. The interrelationships can now be better appreciated following the genotyping of large immune disease sample sets on a shared SNP array: the 'Immunochip'. Here, we systematically analyse loci shared among major immune-mediated diseases. This reveals that several diseases share multiple susceptibility loci, but there are many nuances. The most associated variant at a given locus frequently differs and, even when shared, the same allele often has opposite associations. Interestingly, risk alleles conferring the largest effect sizes are usually disease-specific. These factors help to explain why early evidence of extensive 'sharing' is not always reflected in epidemiological overlap. © 2013 Macmillan Publishers Limited. All rights reserved.
Resumo:
In order to progress beyond currently available medical devices and implants, the concept of tissue engineering has moved into the centre of biomedical research worldwide. The aim of this approach is not to replace damaged tissue with an implant or device but rather to prompt the patient's own tissue to enact a regenerative response by using a tissue-engineered construct to assemble new functional and healthy tissue. More recently, it has been suggested that the combination of Synthetic Biology and translational tissue-engineering techniques could enhance the field of personalized medicine, not only from a regenerative medicine perspective, but also to provide frontier technologies for building and transforming the research landscape in the field of in vitro and in vivo disease models.
Resumo:
Copy number variants (CNVs) account for a major proportion of human genetic polymorphism and have been predicted to have an important role in genetic susceptibility to common disease. To address this we undertook a large, direct genome-wide study of association between CNVs and eight common human diseases. Using a purpose-designed array we typed 19,000 individuals into distinct copy-number classes at 3,432 polymorphic CNVs, including an estimated 50% of all common CNVs larger than 500 base pairs. We identified several biological artefacts that lead to false-positive associations, including systematic CNV differences between DNAs derived from blood and cell lines. Association testing and follow-up replication analyses confirmed three loci where CNVs were associated with diseaseIRGM for Crohns disease, HLA for Crohns disease, rheumatoid arthritis and type 1 diabetes, and TSPAN8 for type 2 diabetesalthough in each case the locus had previously been identified in single nucleotide polymorphism (SNP)-based studies, reflecting our observation that most common CNVs that are well-typed on our array are well tagged by SNPs and so have been indirectly explored through SNP studies. We conclude that common CNVs that can be typed on existing platforms are unlikely to contribute greatly to the genetic basis of common human diseases. © 2010 Macmillan Publishers Limited. All rights reserved.
Resumo:
Bone and joint diseases are major causes of morbidity and mortality worldwide, and their prevalence is increasing as the average population age increases. Most common musculoskeletal diseases show significant heritability, and few have treatments that prevent disease or can induce true treatment-free, disease-free remission. Furthermore, despite valiant efforts of hypothesis-driven research, our understanding of the etiopathogenesis of these conditions is, with few exceptions, at best moderate. Therefore, there has been a long-standing interest in genetics research in musculoskeletal disease as a hypothesis-free method for investigating disease etiopathogenesis. Important contributions have been made through the identification of monogenic causes of disease, but the holy grail of human genetics research has been the identification of the genes responsible for common diseases. The development of genome-wide association (GWA) studies has revolutionized this field, and led to an explosion in the number of genes identified that are definitely involved in musculoskeletal disease pathogenesis. However, this approach will not identify all common disease genes, and although the current progress is exciting and proves the potential of this research discipline, other approaches will be required to identify many of the types of genetic variation likely to be involved.