1000 resultados para Thermomechanical processing


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poly(ethylene tereftalate) (PET) is a polymer highly susceptible to the hydrolytic reactions that occur during applications and mainly in thermomechanical processing. These reactions lead to the decrease of molecular weight of the polymer, limiting the recycling number of the material. The reactive extrusion of the PET in presence of chain extenders is an alternative to recover mechanical and rheological properties that were depreciated by the polymer degradation. In this study, PET wastes from nonwoven fabrics production were extruded in presence of the secondary stabilizer Irgafos 126 (IRG) on variable concentrations. The results showed that Irgafos 126 increased molecular weight, decreased crystallinity and changed processing behavior of the PET, similarly to the effects produced by the well-known chain extender pyromellitic dianhydride (PMDA), showing that the secondary stabilizer Irgafos 126 can also act as a chain extender for the PET.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O transporte de gás e derivados de petróleo é realizado pelo uso de tubulações, denominadas de oleodutos ou gasodutos, que necessitam de elevados níveis de resistência mecânica e corrosão, aliadas a uma boa tenacidade à fratura e resistência à fadiga. A adição de elementos de liga nesses aços, Ti, V e Nb entre outros, é realizada para o atendimento destes níveis de resistência após o processamento termomecânico das chapas para fabricação destes dutos, utilizando-se a norma API 5L do American Petroleum Institute, API, para a classificação destes aços. A adição de elementos de liga em associação com o processamento termomecânico visa o refino de grão da microestrutura austenítica, o qual é transferido para a estrutura ferrítica resultante. O Brasil é o detentor das maiores reservas mundiais de nióbio, que tem sido apresentado como refinador da microestrutura mais eficiente que outros elementos, como o V e Ti. Neste trabalho dois aços, denominados Normal e Alto Nb foram estudados. A norma API propõe que a soma das concentrações de Nióbio, Vanádio e Titânio devem ser menores que 0,15% no aço. As concentrações no aço contendo mais alto Nb é de 0,107%, contra 0,082% do aço de composição normal, ou seja, ambos atendem o valor especificado pela norma API. Entretanto, os aços são destinados ao uso em dutovias pela PETROBRÁS que impõe limites nos elementos microligantes para os aços aplicados em dutovias. Deste modo estudos foram desenvolvidos para verificar se os parâmetros de resistência à tração, ductilidade, tenacidade ao impacto e resistência à propagação de trinca por fadiga, estariam em acordo com a norma API 5L grau X70 e com os resultados que outros pesquisadores têm encontrado para aços dessa classe. Ainda, como para a formação de uma dutovia os tubos são unidos uns aos outros por processo de soldagem (circunferencial), o estudo de fadiga foi estendido para as regiões da solda e zona termicamente afetada (ZTA). Como conclusão final observa-se que o aço API 5L X70 com Nb modificado, produzido conforme processo desenvolvido pela ArcelorMittal - Tubarão, apresenta os parâmetros de resistência e ductilidade em tração, resistência ao impacto e resistência a propagação de trinca em fadiga (PTF) similar aos aços API 5L X70 com teores de Nb = 0,06 % peso e aqueles da literatura com teores de Nb+Ti+V < 0,15% peso. O metal base, metal de solda e zona termicamente afetada apresentaram curvas da/dN x ΔK similares, com os parâmetros do material C e m, da equação de Paris, respectivamente na faixa de 3,3 - 4,2 e 1.3x10-10 - 5.0x10-10 [(mm/ciclo)/(MPa.m1/2)m].

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of combined silicon and molybdenum alloying additions on microalloy precipitate formation in austenite after single- and double-step deformations below the austenite no-recrystallization temperature were examined in high-strength low-alloy (HSLA) steels microalloyed with titanium and niobium. The precipitation sequence in austenite was evaluated following an interrupted thermomechanical processing simulation using transmission electron microscopy. Large (~ 105 nm), cuboidal titanium-rich nitride precipitates showed no evolution in size during reheating and simulated thermomechanical processing. The average size and size distribution of these precipitates were also not affected by the combined silicon and molybdenum additions or by deformation. Relatively fine (< 20 nm), irregular-shaped niobium-rich carbonitride precipitates formed in austenite during isothermal holding at 1173 K. Based upon analysis that incorporated precipitate growth and coarsening models, the combined silicon and molybdenum additions were considered to increase the diffusivity of niobium in austenite by over 30% and result in coarser precipitates at 1173 K compared to the lower alloyed steel. Deformation decreased the size of the niobium-rich carbonitride precipitates that formed in austenite.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An Fe-0.26C-1.96Si-2Mn with 0.31Mo (wt%) steel was subjected to a novel thermomechanical processing route to produce fine ferrite with different volume fractions, bainite, and retained austenite. Two types of fine ferrites were found to be: (i) formed along prior austenite grain boundaries, and (ii) formed intragranularly in the interior of austenite grains. An increase in the volume fraction of fine ferrite led to the preferential formation of blocky retained austenite with low stability, and to a decrease in the volume fraction of bainite with stable layers of retained austenite. The difference in the morphology of the bainitic ferrite and the retained austenite after different isothermal ferrite times was found to be responsible for the deterioration of the mechanical properties. The segregation of Mn, Mo, and C at distances of 2-2.5 nm from the ferrite and retained austenite/martensite interface on the retained austenite/martensite site was observed after 2700 s of isothermal hold. It was suggested that the segregation occurred during the austenite-to-ferrite transformation, and that this would decrease the interface mobility, which affects the austenite-to-ferrite transformation and ferrite grain size.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The goal in the heat treatment or thermomechanical processing of steel is to improve the mechanical properties. For structural steel applications the general aim is to refine the ferrite grain size as this is the only method that improves both the strength and toughness simultaneously. For conventional hot rolling and accelerated cooling processes, it is difficult to refine the grain size below 5. μm without extensive alloying. However, it has been found that inducing transformation during deformation (i.e. dynamic transformation) can lead to grain sizes of the order of 1. μm, even in very simple steel compositions. The exact mechanism(s) for this transformation process are still being debated, and this has also been complicated by recent studies where such grain sizes can be obtained by static transformation from austenite that has been heavily deformed at low temperatures prior to the transformation. This chapter reviews the various major studies related in particular to dynamic transformation and considers the contributions from the deformed austenite structure developed prior to the transformation and the potential for dynamic recrystallisation of the ferrite. A key factor is proposed to be the early three-dimensional impingement of the ferrite which also provides an insight into cases where ultrafine grains are achieved statically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dual-section variable frequency microwave systems enable rapid, controllable heating of materials within an individual surface mount component in a chip-on=board assembly. The ability to process devices individually allows components with disparate processing requirements to be mounted on the same assembly. The temperature profile induced by the microwave system can be specifically tailored to the needs of the component, allowing optimisation and degree of cure whilst minimising thermomechanical stresses. This paper presents a review of dual-section microwave technology and its application to curing of thermosetting polymer materials in microelectronics applications. Curing processes using both conventional and microwave technologies are assessed and compared. Results indicate that dual-section microwave systems are able to cure individual surface mount packages in a significantly shorter time, at the expense of an increase in thermomechanical stresses and a greater variation in degree of cure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is important that long superconducting tape must have desired strain tolerance (less reduction of Jc with applied strains) and stress tolerance (less reduction of JC in applied stresses) for its use as coils and magnets. Ag addition to the BPSCCO system has many advantages with its physical and chemical inertness to the system, reduces the processing temperature, and promotes the grain growth, grain alignment and connectivity. All these not only enhance the critical current density of the tapes but also improve the mechanical properties. But the published results show very much scattering on the type of Ag additive to be selected, method of addition and its optimum percentage. Also there are some negative reports in this regard. The present work has been undertaken to study the effect of silver addition in different forms (Ag powder, Ag2O, AgNO3) on the superconducting and mechanical properties of (Bi,Pb)-2223/Ag tapes and to find out a suitable form of Ag additive and its optimum percentage to have better superconducting and mechanical properties. Also it is the aim of the present work is to optimise the process parameters needed to prepare (Bi,Pb)-2223/Ag multifilamentary tapes of length ~ 12 m in solenoid and pancake coil forms with good critical current density and homogeneity of J C along the length of the tapes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of the partial replacement of Si with Al and the addition of P on the microstructure and mechanical properties of experimental TRIP-aided steels subjected to different thermo-mechanical cycles were studied. Based on the available literature and thermodynamics-based calculations, three steels with different compositions were designed to obtain optimum results from a relatively low number of experiments. Different combinations of microstructure were developed through three different kinds of thermo-mechanical-controlled processing (TMCP) routes, and the corresponding tensile properties were evaluated. The results indicated that partial replacement of Si with Al improved the strength-ductility balance along with providing an improved variation in the incremental change in the strain-hardening exponent. However, the impact of the P addition was found to depend more on the final microstructure obtained by the different TMCP cycles. It has also been shown that an increase in the volume fraction of the retained austenite ($$ V_{{\gamma_{\text{ret}} }} $$Vγret) or its carbon content ($$ C_{{\gamma_{\text{ret}} }} $$Cγret) resulted in an improved strength-ductility balance, which can be attributed to better exploitation of the TRIP effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermoplastic starch (TPS) from industrial non-modified corn starch was obtained and reinforced with natural strands. The influence of the reinforcement on physical-chemical properties of the composites obtained by melt processing has been analyzed. For this purpose, composites reinforced with different amounts of either sisal or hemp strands have been prepared and evaluated in terms of crystallinity, water sorption, thermal and mechanical properties. The results showed that the incorporation of sisal or hemp strands caused an increase in the glass transition temperature (T-g) of the TPS as determined by DMTA. The reinforcement also increased the stiffness of the material, as reflected in both the storage modulus and the Young's modulus. Intrinsic mechanical properties of the reinforcing fibers showed a lower effect on the final mechanical properties of the materials than their homogeneity and distribution within the matrix. Additionally, the addition of a natural latex plasticizer to the composite decreased the water absorption kinetics without affecting significantly the thermal and mechanical properties of the material. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon fiber (CF)-reinforced high-temperature thermoplastics such as poly(phenylene sulphide) (PPS) are widely used in structural composites for aerospace and automotive applications. The porosity of CF-reinforced polymers is a very important topic for practical applications since there is a direct correlation between void content and mechanical properties. In this study, inorganic fullerene-like tungsten disulphide (IF-WS2) lubricant nanoparticles were used to manufacture PPS/IF-WS2/CF laminates via melt-blending and hot-press processing, and the effect of IF-WS2 loading on the quality, thermal and mechanical behaviour of the hybrid composites was investigated. The addition of IF-WS2 improved fiber impregnation, resulting in lower degree of porosity and increased delamination resistance, compression and flexural properties; their reinforcement effect was greater at temperatures above the glass transition (Tg). IF-WS2 contents higher than 0.5 wt % increased Tg and the heat deflection temperature while reduced the coefficient of thermal expansion. The multiscale laminates exhibited higher ignition point and notably reduced peak heat release rate compared to PPS/CF. The coexistence of micro- and nano-scale fillers resulted in synergistic effects that enhanced the stiffness, strength, thermal conductivity and flame retardancy of the matrix. The results presented herein demonstrate that the IF-WS2 are very promising nanofillers to improve the thermomechanical properties of conventional thermoplastic/CF composites.