953 resultados para Thermogravimetry, hot stage Raman spectroscopy, indium hydroxide, indium oxide
Resumo:
This project focused on maximising the detection range of an eye-safe stand-off Raman system for use in detecting explosives. Investigation of the effect on detection range through differing laser parameters in this thesis provided optimal laser settings to achieve the largest possible detection range of explosives, while still remaining under the eye-safe limit.
Resumo:
We report rapid and ultra-sensitive detection system for 2,4,6-trinitrotoluene (TNT) using unmodified gold nanoparticles and surface-enhanced Raman spectroscopy (SERS). First, Meisenheimer complex has been formed in aqueous solution between TNT and cysteamine in less than 15 min of mixing. The complex formation is confirmed by the development of a pink colour and a new UV–vis absorption band around 520 nm. Second, the developed Meisenheimer complex is spontaneously self-assembled onto unmodified gold nanoparticles through a stable Au–S bond between the cysteamine moiety and the gold surface. The developed mono layer of cysteamine-TNT is then screened by SERS to detect and quantify TNT. Our experimental results demonstrate that the SERS-based assay provide an ultra-sensitive approach for the detection of TNT down to 22.7 ng/L. The unambiguous fingerprint identification of TNT by SERS represents a key advantage for our proposed method. The new method provides high selectivity towards TNT over 2,4 DNT and picric acid. Therefore it satisfies the practical requirements for the rapid screening of TNT in real life samples where the interim 24-h average allowable concentration of TNT in waste water is 0.04 mg/L.
Resumo:
Samples of marble from Chillagoe, North Queensland have been analysed using scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) and Raman spectroscopy. Different types of marble were studied including soft white marble, hard white marble and a black marble. In this work, we try to ascertain why the black marble has this colour. Chemical analyses provide evidence for the presence of minerals other calcite in the marble, including the pyrite mineral. Some of these chemical analyses correspond to pyrite minerals in the black marble. The Raman spectra of these crystals were obtained and the Raman spectrum corresponds to that of pyrite from the RRUFF data base. The combination of SEM with EDS and Raman spectroscopy enables the characterisation of the mineral pyrite in Chillagoe black marble.
Resumo:
Increasing worldwide terrorist attacks involving explosives presents a growing need for a rapid and ranged explosive detection method that can safely be deployed in the field. Stand-off Raman spectroscopy shows great promise; however, the radiant exposures of lasers required for adequate signal generation are often much greater than what is safe for the eye or the skin, restricting use of the technique to un-populated areas. Here, by determining the safe exposure levels for lasers typically used in Raman spectroscopy, optimal parameter values are identified, which produce the largest possible detection range using power densities that do not exceed the eye-safe limit. It is shown that safe ultraviolet pulse energies can be more than three orders of magnitude greater than equivalent safe visible pulse energies. Coupling this to the 16-fold increase in Raman signal obtained in the ultraviolet at 266 nm over that at 532 nm results in a 131 times larger detection range for the eye-safe 266-nm system over an equivalent eye-safe 532-nm laser system. For the Raman system described here, this translates to a maximum range of 42 m for detecting Teflon with a 266-nm laser emitting a 100-mm diameter beam of 23.5-mJ nanosecond pulses.
Resumo:
A miniaturized flow-through system consisting of a gold coated silicon substrate based on enhanced Raman spectroscopy has been used to study the detection of vapour from model explosive compounds. The measurements show that the detectability of the vapour molecules at room temperature depends sensitively on the interaction between the molecule and the substrate. The results highlight the capability of a flow system combined with Raman spectroscopy for detecting low vapour pressure compounds with a limit of detection of 0.2 ppb as demonstrated by the detection of bis(2-ethylhexyl)phthalate, a common polymer additive emitted from a commercial polyvinyl chloride (PVC) tubing at room temperature.
Resumo:
This thesis presents the development of a rapid, sensitive and reproducible spectroscopic method for the detection of TNT in forensic and environmental applications. Simple nano sensors prepared by cost effective methods were utilized as sensitive platforms for the detection of TNT by surface enhanced Raman spectroscopy. The optimization of the substrate and the careful selection of a suitable recognition molecule contributed to the significant improvements of sensitive and selective targeting over current detection methods. The work presented in this thesis paves the way for effective detection and monitoring of explosives residues in law enforcement and environmental health applications.
Resumo:
Temperature-dependent Raman spectroscopic studies were carried out on Na2Cd(SO4)(2) from room temperature to 600 degrees C. We observe two transitions at around 280 and 565 degrees C. These transitions are driven by the change in the SO4 ion. On the basis of these studies, one can explain the changes in the conductivity data observed around 280 and 565 degrees C. At 280 degrees C, spontaneous tilting of the SO4 ion leads to restriction of Na+ mobility. Above 565 degrees C, the SO4 ion starts to rotate freely, leading to increased mobility of Na+ ion in the channel.
Resumo:
To correlate the Raman frequencies of the amide I and III bands to beta-turn structures, three peptides shown to contain beta-turn structure by x-ray diffraction and NMR were examined. The compounds examined were tertiary (formula: see text). The amide I band of these compounds is seen at 1,668, 1,665, and 1,677 cm-1, and the amide III band appears at 1,267, 1,265, and 1,286 cm-1, respectively. Thus, it is concluded that the amide I band for type III beta-turn structure appears in the range between 1,665 and 1,677 cm-1 and the amide III band between 1,265 and 1,286 cm-1.
Resumo:
Isolating, purifying, and identifying proteins in complex biological matrices is often difficult, time consuming, and unreliable. Herein we describe a rapid screening technique for proteins in biological matrices that combines selective protein isolation with direct surface enhanced Raman spectroscopy (SERS) detection. Magnetic core gold nanoparticles were synthesised, characterised, and subsequently functionalized with recombinant human erythropoietin (rHuEPO)-specific antibody. The functionalized nanoparticles were used to capture rHuEPO from horse blood plasma within 15 minutes. The selective binding between the protein and the functionalized nanoparticles was monitored by SERS. The purified protein was then released from the nanoparticles’ surface and directly spectroscopically identified on a commercial nanopillar SERS substrate. ELISA independently confirmed the SERS identification and quantified the released rHuEPO. Finally, the direct SERS detection of the extracted protein was successfully demonstrated for in-field screening by a handheld Raman spectrometer within 1 minute sample measurement time.
Resumo:
In situ Raman experiments together with transport measurements have been carried out in single-walled carbon nanotubes as a function of electrochemical top gate voltage (Vg). We have used the green laser (EL=2.41 eV), where the semiconducting nanotubes of diameter ~1.4 nm are in resonance condition. In semiconducting nanotubes, the G−- and G+-mode frequencies increase by ~10 cm−1 for hole doping, the frequency shift of the G− mode is larger compared to the G+ mode at the same gate voltage. However, for electron doping the shifts are much smaller: G− upshifts by only ~2 cm−1 whereas the G+ does not shift. The transport measurements are used to quantify the Fermi-energy shift (EF) as a function of the gate voltage. The electron-hole asymmetry in G− and G+ modes is quantitatively explained using nonadiabatic effects together with lattice relaxation contribution. The electron-phonon coupling matrix elements of transverse-optic (G−) and longitudinal-optic (G+) modes explain why the G− mode is more blueshifted compared to the G+ mode at the same Vg. The D and 2D bands have different doping dependence compared to the G+ and G− bands. There is a large downshift in the frequency of the 2D band (~18 cm−1) and D (~10 cm−1) band for electron doping, whereas the 2D band remains constant for the hole doping but D upshifts by ~8 cm−1. The doping dependence of the overtone of the G bands (2G bands) shows behavior similar to the dependence of the G+ and G− bands.
Resumo:
High-throughput techniques are necessary to efficiently screen potential lignocellulosic feedstocks for the production of renewable fuels, chemicals, and bio-based materials, thereby reducing experimental time and expense while supplanting tedious, destructive methods. The ratio of lignin syringyl (S) to guaiacyl (G) monomers has been routinely quantified as a way to probe biomass recalcitrance. Mid-infrared and Raman spectroscopy have been demonstrated to produce robust partial least squares models for the prediction of lignin S/G ratios in a diverse group of Acacia and eucalypt trees. The most accurate Raman model has now been used to predict the S/G ratio from 269 unknown Acacia and eucalypt feedstocks. This study demonstrates the application of a partial least squares model composed of Raman spectral data and lignin S/G ratios measured using pyrolysis/molecular beam mass spectrometry (pyMBMS) for the prediction of S/G ratios in an unknown data set. The predicted S/G ratios calculated by the model were averaged according to plant species, and the means were not found to differ from the pyMBMS ratios when evaluating the mean values of each method within the 95 % confidence interval. Pairwise comparisons within each data set were employed to assess statistical differences between each biomass species. While some pairwise appraisals failed to differentiate between species, Acacias, in both data sets, clearly display significant differences in their S/G composition which distinguish them from eucalypts. This research shows the power of using Raman spectroscopy to supplant tedious, destructive methods for the evaluation of the lignin S/G ratio of diverse plant biomass materials.
Resumo:
NHCH3 (X = Gly 1, Ala 2, Aib 3, Leu 4 and D-Ala 5), have been investigated by Raman and circular dichroism (CD) spectroscopy. Solid state Raman spectra are consistent with β-turn conformations in all five peptides. These peptides exhibit similar conformations of the disulfide segment in the solid state with a characteristic disulfide stretching frequency at 519 ± 3 cm-1, indicative of a trans-gauche-gauche arrangement about the Cα—Cβ—S—S—Cβ—Cα bonds. The results correlate well with the solid state conformations determined by X-ray diffraction for peptides 3 and 4. CD studies in chloroform and dimethylsulfoxide establish solvent dependent conformational changes for peptides 1, 3 and 5. Disulfide chirality has been derived using the quadrant rule. CD results together with previously reported nuclear magnetic resonance (n.m.r.) data suggest a conformational coupling between the peptide backbone and the disulfide segment